Advertisement

On the Bounds on Optimal Bayes Error in the Task of Multiple Data Sources

  • Robert BurdukEmail author
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 184)

Summary

The paper considers the problem of pattern recognition when we have multiple data sources. We assume that for each data source there are estimated parameters of statistical distributions. The model of classification is primarily based on the Bayes rule and secondarily on the notion of interval-valued fuzzy sets. The set of possible class-conditional probability density functions is represented by an interval-valued fuzzy set. We consider the case where the uncertainty concerns the mean of Gaussian pdf. In the paper the bound on the optimal Bayess error is presented for a full probabilistic information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okuda, T., Tanaka, H., Asai, K.: A formulation of fuzzy decision problems with fuzzy information using probability measures of fuzzy events. Information and Control 38, 135–147 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23, 421–427 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Goguen, J.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18(1), 145–174 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Information Science 8, 199–249 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Mitchell, H.B.: Pattern recognition using type-II fuzzy sets. Information Science 170, 409–418 (2005)CrossRefGoogle Scholar
  8. 8.
    Zeng, J., Liu, Y.-Q.: Type-2 fuzzy markov random fields and their application to handwritten chinese character recognition. IEEE Transactions on Fuzzy Systems 16(3), 747–760 (2008)CrossRefGoogle Scholar
  9. 9.
    Jia, Z., Lei, X., Zhi-Qiang, L.: Type-2 fuzzy Gaussian mixture models. Pattern Recognition 41, 3636–3643 (2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    Antos, A., Devroye, L., Gyorfi, L.: Lower bounds for Bayes error estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 643–645 (1999)CrossRefGoogle Scholar
  11. 11.
    Avi-Itzhak, H., Diep, T.: Arbitrarily tight upper and lower bounds on the bayesian probability of error. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 89–91 (1996)CrossRefGoogle Scholar
  12. 12.
    Kulkarni, A.: On the mean accuracy of hierarchical classifiers. IEEE Transactions on Computers 27, 771–776 (1978)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kurzyński, M.: On the multistage Bayes classifier. Pattern Recognition 21, 355–365 (1988)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis and Applications 1, 18–27 (1998)CrossRefGoogle Scholar
  15. 15.
    Woźniak, M.: Experiments on linear combiners. In: Pietka, E., Kawa, J. (eds.) Information Tech. in Biomedicine. ASC, vol. 47, pp. 445–452. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Burduk, R.: Classification error in Bayes multistage recognition task with fuzzy observations. Pattern Analysis and Applications 13(1), 85–91 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pardo, L., Menendez, M.L.: Some bounds on probability of error in fuzzy discrimination problems. European Journal of Operational Research 53, 362–370 (1991)zbMATHCrossRefGoogle Scholar
  18. 18.
    Pardo, J.A., Taneja, I.J.: On the probability of error in fuzzy discrimination Problems. Kybernetes 21(6), 43–52 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kuncheva, L.I.: Combining pattern classifier: Methods and Algorithms. John Wiley, New York (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Zeng, J., Xie, L., Liu, Y.-Q.: Type-2 fuzzy Gaussian mixture models. Pattern Recognition 41, 3636–3643 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations