The Algorithm Selection Problem on the Continuous Optimization Domain
Abstract
The problem of algorithm selection, that is identifying the most efficient algorithm for a given computational task, is non-trivial. Meta-learning techniques have been used successfully for this problem in particular domains, including pattern recognition and constraint satisfaction. However, there has been a paucity of studies focused specifically on algorithm selection for continuous optimization problems. This may be attributed to some extent to the difficulties associated with quantifying problem “hardness” in terms of the underlying cost function. In this paper, we provide a survey of the related literature in the continuous optimization domain. We discuss alternative approaches for landscape analysis, algorithm modeling and portfolio development. Finally, we propose a meta-learning framework for the algorithm selection problem in the continuous optimization domain.
Keywords
Algorithm Selection Fitness Landscape Continuous Optimization Combinatorial Auction Landscape AnalysisPreview
Unable to display preview. Download preview PDF.
References
- 1.Achiloptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)CrossRefGoogle Scholar
- 2.Anderson, E.: Markov chain modelling of the solution surface in local search. J. Oper. Res. Soc. 53(6), 630–636 (2002)zbMATHCrossRefGoogle Scholar
- 3.Angel, E., Zissimopoulos, V.: On the hardness of the quadratic assignment problem with metaheuristics. Heuristics 8(4), 399–414 (2002)CrossRefGoogle Scholar
- 4.Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: a regression tree based approach. In: CEC 2004, vol. 1, pp. 1111–1118 (2004)Google Scholar
- 5.Bartz-Beielstein, T., Parsopoulos, K., Vrahatis, M.: Analysis of particle swarm optimization using computational statistics. In: ICNAAM 2004, pp. 34–37 (2004)Google Scholar
- 6.Beck, J., Watson, J.: Adaptive search algorithms and Fitness-Distance correlation. In: Proc. 5th Metaheuristics Int. Conf. (2003)Google Scholar
- 7.Borenstein, Y., Poli, R.: Fitness Distributions and GA Hardness. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 11–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 8.Borenstein, Y., Poli, R.: Information landscapes. In: GECCO 2005, pp. 1515–1522. ACM (2005)Google Scholar
- 9.Borenstein, Y., Poli, R.: Kolmogorov complexity, optimization and hardness. In: CEC 2006, pp. 112–119 (2006)Google Scholar
- 10.Boukeas, G., Halatsis, C., Zissimopoulos, V., Stamatopoulos, P.: Measures of Intrinsic Hardness for Constraint Satisfaction Problem Instances. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 184–195. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 11.Branke, J., Schmidt, C.: Faster convergence by means of fitness estimation. Soft Comput. 9(1), 13–20 (2005)CrossRefGoogle Scholar
- 12.Brooks, C., Durfee, E.: Using Landscape Theory to Measure Learning Difficulty for Adaptive Agents. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 291–305. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 13.Carchrae, T., Beck, J.: Low knowledge algorithm control. In: AAAI 2004, pp. 49–54 (2004)Google Scholar
- 14.Carchrae, T., Beck, J.: Applying machine learning to low-knowledge control of optimization algorihms. Comput. Intell. 21(4), 372–387 (2005)MathSciNetCrossRefGoogle Scholar
- 15.Davidor, Y.: Epistasis variance: A viewpoint on GA-hardness. In: Foundations of Genetic Algorithms. Morgan Kaufmann (1991)Google Scholar
- 16.Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
- 17.Eremeev, A.V., Reeves, C.R.: Non-parametric Estimation of Properties of Combinatorial Landscapes. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 31–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 18.Eremeev, A.V., Reeves, C.R.: On Confidence Intervals for the Number of Local Optima. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 224–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 19.Fonlupt, C., Robilliard, D., Preux, P.: A Bit-Wise Epistasis Measure for Binary Search Spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 47–56. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 20.Francois, O., Lavergne, C.: Design of evolutionary algorithms-A statistical perspective. IEEE Trans. Evol. Comput. 5(2), 129–148 (2001)CrossRefGoogle Scholar
- 21.Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program Evolvable Mach. 12(4), 365–401 (2011)CrossRefGoogle Scholar
- 22.Garnier, J., Kallel, L.: Efficiency of local search with multiple local optima. SIAM J. Discrete Math. 15(1), 122–141 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Graff, M., Poli, R.: Practical performance models of algorithms in evolutionary program induction and other domains. Artif. Intell. 174, 1254–1276 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Grobler, J., Engelbrecht, A., Kendall, G., Yadavalli, V.: Alternative hyper-heuristic strategies for multi-method global optimization. In: CEC 2010, pp. 1–8 (2010)Google Scholar
- 26.He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evol. Comput. 15(4), 435–443 (2007)CrossRefGoogle Scholar
- 27.Heckendorn, R., Whitley, D.: Predicting epistasis from mathematical models. Evol. Comput. 7(1), 69–101 (1999)CrossRefGoogle Scholar
- 28.Hilario, M., Kalousis, A., Nguyen, P., Woznica, A.: A data mining ontology for algorithm selection and meta-mining. In: SoKD 2009, pp. 76–87 (2009)Google Scholar
- 29.Hough, P., Williams, P.: Modern machine learning for automatic optimization algorithm selection. In: INFORMS AI/DM Workshop (2006)Google Scholar
- 30.Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 31.Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms: An initial investigation. In: The AAAI Workshop on Learning for Search: Schedule (2006)Google Scholar
- 32.Hutter, F., Hoos, H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of competing algorithm designs. Tech. Rep. TR-2009-21, The University of British Columbia (2009)Google Scholar
- 33.Jansen, T.: On classifications of fitness functions. Tech. Rep. CI-76/99, University of Dortmund (1999)Google Scholar
- 34.Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: GECCO 1995, pp. 184–192. Morgan Kaufmann Publishers Inc. (1995)Google Scholar
- 35.Jong, K.D.: Parameter setting in EAs: a 30 year perspective. In: Parameter Setting in Evolutionary Algorithms, Stud. Comput Intell., vol. 54, pp. 1–18. Springer (2005)Google Scholar
- 36.Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 37.Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. J. ACM 56(4), 22:1–22:52 (2009)Google Scholar
- 38.Liu, L., Abbass, H., Green, D., Zhong, W.: Motif difficulty (MD): a predictive measure of problem difficulty for evolutionary algorithms using network motifs. Evol. Comput. 20(3), 321–347 (2012)Google Scholar
- 39.Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: GECCO 2006, pp. 477–484. ACM, New York (2006)CrossRefGoogle Scholar
- 40.Merkuryeva, G., Bolshakovs, V.: Structural analysis of benchmarking fitness landscapes. Scientific Journal of Riga Technical University: Computer Sciences 42, 81–86 (2010)CrossRefGoogle Scholar
- 41.Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: GECCO 2011, pp. 829–836. ACM (2011)Google Scholar
- 42.Messelis, T., Haspeslagh, S., Bilgin, B., Causmaecker, P.D., Berghe, G.V.: Towards prediction of algorithm performance in real world optimisation problems. In: BNAIC 2009, pp. 177–183 (2009)Google Scholar
- 43.Molina, D., Herrera, F., Lozano, M.: Adaptive local search parameters for real-coded memetic algorithms. In: CEC 2005, vol. 1, pp. 888–895 (2005)Google Scholar
- 44.Muñoz, M., Kirley, M., Halgamuge, S.: Landscape characterization of numerical optimization problems using biased scattered data. In: CEC 2012, pp. 2162–2169 (2012)Google Scholar
- 45.Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems. In: Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)Google Scholar
- 46.Müller, C.L., Sbalzarini, I.F.: Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 47.Naudts, B., Kallel, L.: A comparison of predictive measures of problem difficulty in evolutionary algorithms. IEEE Trans. Evol. Comput. 4(1), 1–15 (2000)CrossRefGoogle Scholar
- 48.Naudts, B., Suys, D., Verschoren, A.: Epistasis as a basic concept in formal landscape analysis. In: GECCO 1997, pp. 65–72. Morgan Kaufmann (1997)Google Scholar
- 49.Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill Climbers and Mutational Heuristics in Hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 202–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 50.Pedersen, M.: Tuning & simplifying heuristical optimization. PhD thesis, University of Southampton (2009)Google Scholar
- 51.Peng, F., Tang, K., Chen, G., Yao, X.: Population-Based algorithm portfolios for numerical optimization. IEEE Trans. Evol. Comput. 14(5), 782–800 (2010)CrossRefGoogle Scholar
- 52.Petrovic, S., Epstein, S., Wallace, R.: Learning a mixture of search heuristics. In: CP 2007 (2007)Google Scholar
- 53.Reeves, C.: Fitness landscapes. In: Search Methodologies, pp. 587–610. Springer (2005)Google Scholar
- 54.Reeves, C., Eremeev, A.: Statistical analysis of local search landscapes. J. Oper. Res. Soc. 55(7), 687–693 (2004)zbMATHCrossRefGoogle Scholar
- 55.Reeves, C., Wright, C.: An experimental design perspective on genetic algorithms. In: Foundations of Genetic Algorithms, vol. 3, pp. 7–22. Morgan Kaufmann (1995)Google Scholar
- 56.Rice, J.: The algorithm selection problem. In: Adv. Comput., vol. 15, pp. 65–118. Elsevier (1976)Google Scholar
- 57.Rice, J.: Methodology for the algorithm selection problem. In: Proc. IFIP TC 2.5 Working Conference on Performance Evaluation of Numerical Software (1979)Google Scholar
- 58.Rochet, S., Venturini, G., Slimane, M., El Kharoubi, E.M.: A Critical and Empirical Study of Epistasis Measures for Predicting GA Performances: A Summary. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 275–285. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 59.Rockmore, D., Kostelec, P., Hordijk, W., Stadler, P.: Fast fourier transform for fitness landscapes. Appl. Comput. Harmon Anal. 12(1), 57–76 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Seo, D., Moon, B.: An Information-Theoretic analysis on the interactions of variables in combinatorial optimization problems. Evol. Comput. 15(2), 169–198 (2007)CrossRefGoogle Scholar
- 61.Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10(1), 1–34 (2002)CrossRefGoogle Scholar
- 62.Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)Google Scholar
- 63.Smith-Miles, K., Hemert, J.v.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Ann. Math. Artif. Intel. 61(2), 87–104 (2011)zbMATHCrossRefGoogle Scholar
- 64.Stadler, P.: Landscapes and their correlation functions. J. Math. Chem. 20(1), 1–45 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Streeter, M., Golovin, D., Smith, S.: Combining multiple heuristics online. In: AAAI 2007, vol. 2, pp. 1197–1203. AAAI Press (2007)Google Scholar
- 66.Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)CrossRefGoogle Scholar
- 67.Vanneschi, L.: Investigating problem hardness of real life applications. In: Genetic Programming Theory and Practice V, Genetic and Evolutionary Computation, pp. 107–124. Springer, US (2008)CrossRefGoogle Scholar
- 68.Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness Clouds and Problem Hardness in Genetic Programming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 69.Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 70.Vanneschi, L., Valsecchi, A., Poli, R.: Limitations of the fitness-proportional negative slope coefficient as a difficulty measure. In: GECCO 2009, pp. 1877–1878. ACM, New York (2009)CrossRefGoogle Scholar
- 71.Vassilev, V., Fogarty, T., Miller, J.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)CrossRefGoogle Scholar
- 72.Vassilev, V., Fogarty, T., Miller, J.: Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. In: Advances in Evolutionary Computing, pp. 3–44. Springer, New York (2003)CrossRefGoogle Scholar
- 73.Vassilevska, V., Williams, R., Woo, S.: Confronting hardness using a hybrid approach. In: Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 1–10. ACM, New York (2006)Google Scholar
- 74.Vrugt, J., Robinson, B., Hyman, J.: Self-Adaptive multimethod search for global optimization in Real-Parameter spaces. IEEE Trans. Evol. Comput. 13(2), 243–259 (2009)CrossRefGoogle Scholar
- 75.Watson, J., Beck, J., Howe, A., Whitley, L.: Problem difficulty for tabu search in job-shop scheduling. Artif. Intell. 143(2), 189–217 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 76.Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)zbMATHCrossRefGoogle Scholar
- 77.Weinberger, E., Stadler, P.: Why some fitness landscapes are fractal. J. Theor. Biol. 163(2), 255–275 (1993)CrossRefGoogle Scholar
- 78.Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
- 79.Yeguas, E., Joan-Arinyo, R., Luzón, M.V.: Modeling the performance of evolutionary algorithms on the root identification problem: A case study with PBIL and CHC algorithms. Evol. Comput. 19(1), 107–135 (2011)CrossRefGoogle Scholar