Advertisement

Medical Protocol Diagnosis Using Formal Methods

  • Dominique Méry
  • Neeraj Kumar Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7151)

Abstract

Clinical guidelines systematically assist practitioners to provide appropriate health care in specific clinical circumstances. Today, a significant number of guidelines and protocols are lacking in quality. Indeed, ambiguity and incompleteness are likely anomalies in medical practice. Our objective is to find anomalies and to improve the quality of medical protocols using well-known mathematical formal techniques, such as Event B. In this paper, we use the Event B modelling language to capture guidelines for their validation. Our main contributions are: to apply mathematical formal techniques to evaluate real-life medical protocols for quality improvement; to derive verification proofs for the protocol and properties according to medical experts; and to publicize the potential of this approach. An assessment of the proposed approach is given through a case study, relative to a real-life reference protocol (ECG interpretation), which covers a wide variety of protocol characteristics related to several heart diseases. We formalize the reference protocol, verify a set of interesting properties of the protocol and finally determine anomalies.

Keywords

Electrocardiogram (ECG) Medical protocol Abstract model Event B Event-driven approach Proof-based development Refinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lohr, K.N., Field, M.J.: Clinical practice guidelines: directions for a new program. In: Committee to Advise the Public Health Service on Clinical Practice Guidelines, United States and Institute of Medicine. National Academy Press, Washington, D.C. (1990)Google Scholar
  2. 2.
    Ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving medical protocols by formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)Google Scholar
  4. 4.
    Project RODIN: Rigorous open development environment for complex systems (2004), http://rodin-b-sharp.sourceforge.net/
  5. 5.
    Méry, D., Singh, N.K.: Technical Report on Interpretation of the Electrocardiogram (ECG) Signal using Formal Methods. Technical report, LORIA UMR 7503 (2011), http://hal.inria.fr/inria-00584177/en/
  6. 6.
    Shahar, Y., Miksch, S., Johnson, P.: The asgaard project: A task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine, 29–51 (1998)Google Scholar
  7. 7.
    Samson, M.M., Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: Eon: A component-based approach to automation of protocol-directed therapy (1996)Google Scholar
  8. 8.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the proforma approach. Artificial Intelligence in Medicine 14(1-2), 157–182 (1998)CrossRefGoogle Scholar
  9. 9.
    Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M., et al.: Comparing computer-interpretable guideline models: A case-study approach. JAMIA 10 (2003)Google Scholar
  10. 10.
    Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Greenes, R.A., Patel, V.L., Shortliffe, E.H.: Representation primitives, process models and patient data in computer-interpretable clinical practice guidelines: A literature review of guideline representation models. International Journal of Medical Informatics 68(1-3), 59–70 (2002)CrossRefGoogle Scholar
  11. 11.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: A review. International Journal of Medical Informatics 77(12), 787–808 (2008)CrossRefGoogle Scholar
  12. 12.
    Miller, P.L.: A critiquing approach to expert computer advice: Attending. Pitman Publishing, Inc., Marshfield (1985)Google Scholar
  13. 13.
    Marcos, M., Berger, G., van Harmelen, F., ten Teije, A., Roomans, H., Miksch, S.: Using Critiquing for Improving Medical Protocols: Harder than It Seems. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 431–441. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Shiffman, R.N., Greenes, R.A.: Improving Clinical Guidelines with Logic and Decision-table Techniques: Application to Hepatitis Immunization Recommendations. Med. Decis. Making 14(3), 245–254 (1994)CrossRefGoogle Scholar
  15. 15.
    Shiffman, R.N.: Representation of Clinical Practice Guidelines in Conventional and Augmented Decision Tables. Journal of AMIA 4(5), 382–393 (1997)Google Scholar
  16. 16.
    Miller, D.W., Frawley, S.J., Miller, P.L.: Using semantic constraints to help verify the completeness of a computer-based clinical guideline for childhood immunization. Computer Methods and Programs in Biomedicine 58(3), 267–280 (1999)CrossRefGoogle Scholar
  17. 17.
    Bottrighi, A., Giordano, L., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Adopting model checking techniques for clinical guidelines verification. Artif. Intell. Med. 48, 1–19 (2010)CrossRefGoogle Scholar
  18. 18.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23, 279–295 (1997)CrossRefGoogle Scholar
  19. 19.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  20. 20.
    Prez, B., Porres, I.: Authoring and verification of clinical guidelines: A model driven approach. Journal of Biomedical Informatics 43(4), 520–536 (2010)CrossRefGoogle Scholar
  21. 21.
    Rumbaugh, J., Jacobson, I., Booch, G. (eds.): The Unified Modeling Language reference manual. Addison-Wesley Longman Ltd., Essex (1999)Google Scholar
  22. 22.
    Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for MDA, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)Google Scholar
  23. 23.
    Schmitt, J., Hoffmann, A., Balser, M., Reif, W., Marcos, M.: Interactive Verification of Medical Guidelines. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of Medical Guidelines by Model Checking – A Case Study. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 219–233. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Balser, M., Coltell, O., Croonenborg, J.V., Duelli, C., Harmelen, F.V., Jovell, A., Lucas, P., Marcos, M., Miksch, S., Reif, W., Rosenbr, K., Seyfang, A., Teije, A.T.: Protocure: Supporting the development of medical protocols through formal methods. In: SCPG 2004. Studies in Health Technology and Informatics, vol. 101, pp. 103–108. IOS Press (2004) Google Scholar
  26. 26.
    Balser, M., Reif, W., Schellhorn, G., Stenzel, K.: Kiv 3.0 for Provably Correct Systems. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 330–337. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Balzer, M., Duelli, C., Reif, W.: Formal Semantics of Asbru-An Overview. In: Integrated Design and Process Technology IPDT (2002)Google Scholar
  28. 28.
    Kosara, R., Miksch, S., Andreas, S.A., Votruba, P.: Tools for acquiring clinical guidelines in asbru (2002)Google Scholar
  29. 29.
    Seyfang, A., Miksch, S., Marcos, M., Wittenberg, J., Polo-Conde, C., Rosenbrand, K.: Bridging the gap between informal and formal guideline representations. In: 17th European Conference on Artificial Intelligence, Riva del Garda, Italy, pp. 447–451. IOS Press (2006)Google Scholar
  30. 30.
    Miksch, S., Hunter, J., Keravnou, E.T. (eds.): AIME 2005. LNCS (LNAI), vol. 3581. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    Khan, M.G.: Rapid ECG Interpretation. Humana Press (2008)Google Scholar
  32. 32.
    Barold, S.S., Stroobandt, R.X., Sinnaeve, A.F.: Cardiac Pacemakers Step by Step. Futura Publishing (2004) ISBN 1-4051-1647-1Google Scholar
  33. 33.
    Bjorner, D.: Software Engineering 1-2-3. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006)Google Scholar
  34. 34.
    Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Textbook in Computer Science. Springer (2007)Google Scholar
  35. 35.
    Chandy, K.M., Misra, J.: Parallel program design - a foundation. Addison-Wesley (1989)Google Scholar
  36. 36.
    Lamport, L.: Specifying Systems. The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)Google Scholar
  37. 37.
    Back, R.J., Xu, Q.: Refinement of fair action systems. Acta Inf. 35(2), 131–165 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Leavens, G.T., Abrial, J.R., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner, E., Jones, C., Miller, D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for enhanced languages and methods to aid verification. In: Fifth Intl. Conf. Generative Programming and Component Engineering (GPCE 2006), pp. 221–235. ACM (October 2006)Google Scholar
  39. 39.
    Atelier, B.: ClearSy Aix-en-Provence (F), Version 3.6 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dominique Méry
    • 1
  • Neeraj Kumar Singh
    • 1
  1. 1.Université de Lorraine, LORIAVandoeuvre lès NancyFrance

Personalised recommendations