Synthesis of Distributed Mobile Programs Using Monadic Types in Coq

  • Marino Miculan
  • Marco Paviotti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7406)

Abstract

We present a methodology for the automatic synthesis of certified, distributed, mobile programs with side effects in Erlang, using the Coq proof assistant.

First, we define monadic types in the Calculus of Inductive Constructions, using a lax monad covering the distributed computational aspects. These types can be used for the specifications of programs in Coq. From the (constructive) proofs of these specifications we can extract Haskell code, which is decorated with symbols representing distributed nodes and specific operations for distributed computations. These syntactic annotations are exploited by a back-end compiler to produce actual mobile code for a suitable runtime environment (Erlang, in our case).

Then, we introduce an object type theory for distributed computations, which can be used as a front-end programming language. These types and terms are translate to CIC extended with monadic types; this allows us to prove the soundess of the object type theory, and to obtain an implementation of the language via Coq’s extraction features.

This methodology can be ported to other computational aspects, by suitably adapting the monadic type theory and the back-end compiler.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, J.: Erlang - a survey of the language and its industrial applications. In: Proc. INAP 1996 (1996)Google Scholar
  2. 2.
    Honsell, F., Miculan, M.: A Natural Deduction Approach to Dynamic Logics. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 165–182. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (co)inductive type theory. Theoretical Computer Science 253(2), 239–285 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: Proc. POPL, pp. 42–54. ACM (2006)Google Scholar
  5. 5.
    Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  6. 6.
    Letouzey, P.: Extraction in COQ: An Overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Licata, D.R., Harper, R.: A monadic formalization of ML5. In: Crary, K., Miculan, M. (eds.) Proc. LFMTP. EPTCS, vol. 34, pp. 69–83 (2010)Google Scholar
  8. 8.
    Murphy VII, T., Crary, K., Harper, R.: Type-Safe Distributed Programming with ML5. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 108–123. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Paulin-Mohring, C., Werner, B.: Synthesis of ML programs in the system COQ. Journal of Symbolic Computation 15, 607–640 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Plotkin, G., Power, J.: Notions of Computation Determine Monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Virding, R., Wikström, C., Williams, M.: Concurrent programming in ERLANG, 2nd edn. Prentice Hall International (UK) Ltd. (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marino Miculan
    • 1
  • Marco Paviotti
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of UdineItaly

Personalised recommendations