Advertisement

A Machine Consciousness Approach to the Design of Human-Like Bots

  • Raúl Arrabales
  • Jorge Muñoz
  • Agapito Ledezma
  • German Gutierrez
  • Araceli Sanchis
Chapter

Abstract

This chapter introduces Machine Consciousness as a new research field applied to the development of human-like behaviour of non-player characters (NPCs) in video games. Key aspects, advantages, and challenges of this young research area are discussed using the cognitive architecture CERA-CRANIUM as an illustrative example of an autonomous control system inspired by cognitive theories of human consciousness. Additionally, other cognitive architectures used in video games are also analyzed. The bot codenamed CC-Bot2, winner of the 2K BotPrize 2010 competition and based on the CERA-CRANIUM cognitive architecture, is also described in this chapter. Specifically, the particular way in which CC-Bot2 processes the sensory-motor information and generates sequences of adaptive human-like actions is discussed. We also analyze the main differences between CC-Bot2 and other bots, focusing on the key features that allowed CC-Bot2 to win first place in the competition. Finally, we conclude by describing the main lines of work for future CC-Bot implementations and pointing out major conclusions about the application of Machine Consciousness to the design of believable bots.

Keywords

Video Game Control Architecture Perceptual Information Cognitive Architecture Human Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are indebted to the reviewers and the editor of the book for their helpful comments and critique.

References

  1. 1.
    Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y., et al.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  2. 2.
    Arrabales, R., Ledezma, A., Sanchis, A.: CERA-CRANIUM: a test bed for machine consciousness research. In: International Workshop on Machine Consciousness. Towards a Science of Consciousness 2009, p. 105. Hong Kong (2009)Google Scholar
  3. 3.
    Arrabales, R., Ledezma, A., Sanchis, A.: Towards conscious-like behavior in computer game characters. In: IEEE Symposium on Computational Intelligence and Games, pp. 217–224. IEEE Press, Milano, Italy (2009)Google Scholar
  4. 4.
    Baars, B.: A Cognitive Theory of Consciousness. Cambridge University Press, New York (1988)Google Scholar
  5. 5.
    Baars, B.: Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005)Google Scholar
  6. 6.
    Baars, B.J.: The conscious access hypothesis: origins and recent evidence. Trends Cogn. Sci. 6, 47–52 (2002)CrossRefGoogle Scholar
  7. 7.
    Best, B., Lebiere, C., Scarpinatto, C.: Modeling synthetic opponents in MOUT training simulations using the ACT-R cognitive architecture. In: Proceedings of the 11th Conference on Computer Generated Forces and Behavior Representation (2002)Google Scholar
  8. 8.
    Chella, A., Manzotti, R.: Artificial Consciousness. Imprint Academic, UK (2007)Google Scholar
  9. 9.
    Choi, D., Konik, T., Nejati, N., Park, C., Langley, P.: A believable agent for first-person shooter games. In: Proceedings of the third annual artificial intelligence and interactive digital entertainment conference, pp. 71–73 (2007)Google Scholar
  10. 10.
    Epic Games, Inc.: Unreal Torunament 2004. http://www.unrealtournament2003.com/. Accessed Oct 2010
  11. 11.
    Franklin, S.: A Consciousness Based Architecture for a Functioning Mind. Visions of Mind. IDEA Group Inc, Hershey (2005)Google Scholar
  12. 12.
    Gamez, D.: Progress in machine consciousness. Conscious. Cogn. 17(3), 887–910 (2008)Google Scholar
  13. 13.
    Gemrot, J., Kadlec, R., Bída, M., Burkert, O., Píbil, R., Havlíček, J., Zemčák, L., Šimlovič, J., Vansa, R., Štolba, M., Plch, T., Brom, C.: Pogamut 3 Can Assist Developers in Building AI (Not Only) for Their Videogame Agents. Agents for Games and Simulations, pp. 1–15 (2009)Google Scholar
  14. 14.
    Goertzel, B.: Achieving advanced machine consciousness through integrative, virtually embodied artificial general intelligence. In: Haikonen, P.O.A. (ed.) Proceeding of the Nokia Workshop on Machine Consciousness, pp. 19–21. Helsinki (2008)Google Scholar
  15. 15.
    Goertzel, B., Pennachin, C., Geisweiller, N., Looks, M., Senna, A., Silva, W., Heljakka, A., Lopes, C.: An integrative methodology for teaching embodied non-linguistic agents, applied to virtual animals in Second Life. In: Artificial General Intelligence 2008, Proceedings of the First AGI Conference, pp. 161–175 (2008)Google Scholar
  16. 16.
    Hingston, P.: A Turing Test for computer game bots. IEEE Trans. Comput. Intell. AI Games 1(3), 169–186 (2009)Google Scholar
  17. 17.
    Holland, O.: Machine Consciousness. Imprint Academic, UK (2003)Google Scholar
  18. 18.
    Laird, J.: Soar: an architecture for general intelligence. Technical Report, DTIC Document (1987)Google Scholar
  19. 19.
    Laird, J.: Extending the Soar cognitive architecture. In: Proceedings of the First AGI Conference, pp. 224–235. IOS Press (2008)Google Scholar
  20. 20.
    Laird, J., van Lent, M.: Developing an artificial intelligence engine. In: Proceedings of the Game Developers Conference, pp. 577–588 (1999)Google Scholar
  21. 21.
    Langley, P., Cummings, K., Shapiro, D.: Hierarchical skills and cognitive architectures. In: Proceedings of the twenty-sixth annual conference of the cognitive science society, pp. 779–784. Citeseer (2004)Google Scholar
  22. 22.
    Langley, P., Laird, J., Rogers, S.: Cognitive architectures: Research issues and challenges. Cogn. Syst Res. 10(2), 141–160 (2009)CrossRefGoogle Scholar
  23. 23.
    Langley, P., McKusick, K., Allen, J., Iba, W., Thompson, K.: A design for the Icarus architecture. ACM SIGART Bull. 2(4), 104–109 (1991)CrossRefGoogle Scholar
  24. 24.
    Magerko, B., Laird, J., Assanie, M., Kerfoot, A., Stokes, D.: AI characters and directors for interactive computer games. Ann Arbor 1001(48), 109–2110 (2004)Google Scholar
  25. 25.
    Nareyek, A.: AI in computer games. Queue 1, 58–65 (2004). http://doi.acm.org/10.1145/971564.971593.
  26. 26.
    Polson, P.: Human associative memory. Am. J. Psychol. 88(1), 131–140 (1975)CrossRefGoogle Scholar
  27. 27.
    Prem, E.: Epistemological aspects of embodied artificial intelligence. Cybern. Syst. 28(6), 3 (1997)CrossRefGoogle Scholar
  28. 28.
    Samsonovich, A.V.: Toward a unified catalog of implemented cognitive architectures. In: Samsonovich, A.V., Jóhannsdóttir, K.R., Chella, A., Goertzel, B. (eds.) Biologically Inspired Cognitive Architectures 2010—Proceedings of the First Annual Meeting of the BICA Society, pp. 195–244. IOS Press (2011)Google Scholar
  29. 29.
    Tozour, P.: First-Person Shooter AI Architecture, Chap. 8, pp. 387–396. AI Game Programming Wisdom. Charles River Media, Hingham (2002)Google Scholar
  30. 30.
    Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1980)Google Scholar
  31. 31.
    Wintermute, S., Xu, J., Laird, J.: SORTS: a human-level approach to real-time strategy AI. Ann Arbor 1001(48), 109–2121 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raúl Arrabales
    • 1
  • Jorge Muñoz
    • 1
  • Agapito Ledezma
    • 1
  • German Gutierrez
    • 1
  • Araceli Sanchis
    • 1
  1. 1.Universidad Carlos III de Madrid, Avda. de la Universidad 30LeganésSpain

Personalised recommendations