From UAProf towards a Universal Device Description Repository

  • José Quiroga
  • Ignacio Marín
  • Javier Rodríguez
  • Diego Berrueta
  • Nicanor Gutiérrez
  • Antonio Campos
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 95)


Techniques to create software and content that adapt to different apparatus require gathering information about device features. Traditionally, Device Description Repositories (DDRs) have provided limited descriptions, in terms of description granularity and of the amount of devices included. A Universal DDR (UDDR) would allow any software developer or content creator to have complete, up-to-date and trustworthy device descriptions for any application domain. Collaboration of all stakeholders in the adaptation business would be necessary to populate the UDDR, but without compromising the quality of the information. Device manufacturers usually publish first-hand device descriptions using UAProf. Unfortunately, UAProf documents are known to contain mistakes or inaccurate/incomplete information. This work suggests a multi-step process to manipulate UAProfs in order to correct their most common mistakes, to extend their expressiveness and to allow amendments from different contributors. More specifically, amendments are annotated with provenance information, enabling device description consumers to decide whether to trust them.


device description repository UAProf CC/PP software adaptation content adaptation RDF data provenance profile resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramioul, M., Huws, U., Bollen, A.: Measuring the information society. HIVA PublicationGoogle Scholar
  2. 2.
    DeviceAtlas: Mobile Device Detection,
  3. 3.
    WURFL. The Wireless universal Resource FiLe,
  4. 4.
    The maDDR Project,
  5. 5.
    The World Wide Web Consortium,
  6. 6.
    Device Independence working group. The World Wide Web Consortium,
  7. 7.
    Wireless Application Group–User Agent Profile Specification (1999) Google Scholar
  8. 8.
    Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M., Tran, L.: Composite Capability/Preference Profiles (CC/PP): Structure and vocabularies 1.0. W3C Recommendation 15 (2004)Google Scholar
  9. 9.
    Beckett, D., McBride, B.: RDF/XML Syntax Specification (Revised). W3C Recommendation. The World Wide Web Consortium, February 10 (2004)Google Scholar
  10. 10.
    Open Mobile Alliance,
  11. 11.
    Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Butler, M.: Some questions and answers on CC/PP and UAProf. Tech. rep., Hewlett Packard Laboratories (2002)Google Scholar
  13. 13.
    Butler, M.: CC/PP and UAProf: Issues, improvements and future directions. In: Proceedings of W3C Delivery Context Workshop, DIWS 2002 (2002)Google Scholar
  14. 14.
    Butler, M.: Input to Device Description Working Group (2005),
  15. 15.
    DELI: A Delivery Context Library For CC/PP and UAProf,
  16. 16.
    Indulska, J., Robinson, R., Rakotonirainy, A., Henricksen, K.: Experiences in Using CC/PP in Context-Aware Systems. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 247–261. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Gergic, J., et al.: Addressing On-Demand Assembly and Adaptation Using a Run-time Intentional Versioning Engine. Ph.D. thesis, Charles University in Prague, Faculty of Mathematics and Physics (2008)Google Scholar
  18. 18.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 613–622. ACM, New York (2005), Google Scholar
  19. 19.
    Zhao, J., Miles, A., Klyne, G., Shotton, D.: Linked data and provenance in biological data webs. Briefings in Bioinformatics 10(2), 139–152 (2009), CrossRefGoogle Scholar
  20. 20.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (working draft). Tech. rep., W3C (March 2007),
  21. 21.
    Gil, Y., Cheney, J., Groth, P., Hartig, O., Miles, S., Moreau, L., da Silva, P.P.: Provenance XG Final Report (December 2010),
  22. 22.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C working draft, W3C (October 2010) Google Scholar
  23. 23.
    OMA DELI-2 UAProf Validator,
  24. 24.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, 1st edn. Morgan & Claypool (2011),
  25. 25.
    Miles, A., Bechhofer, S.: SKOS Simple Knowledge Organization System Reference. The World Wide Web Consortium (August 2009),

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • José Quiroga
    • 1
  • Ignacio Marín
    • 1
  • Javier Rodríguez
    • 1
  • Diego Berrueta
    • 1
  • Nicanor Gutiérrez
    • 1
  • Antonio Campos
    • 1
  1. 1.R&D DepartmentFundación CTICGijónSpain

Personalised recommendations