Advertisement

Radial Moment Invariants for Attribute Filtering in 3D

  • Fred N. Kiwanuka
  • Michael H. F. Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7346)

Abstract

The edge or shape preservation property of connected attribute filters is a desirable feature for biomedical imaging and makes them a suitable tool for problems in which accurate shape analysis is of importance. However, there are still comparatively few attributes for 3D filtering upon which to select features of interest besides, efficient and fast computation of attributes from volumetric data is still a daunting challenge. In particular, whereas a vast literature on 2D moment invariants exist, far fewer 3D moment invariants are available. In this study we introduce a new, radial-moment based roundness attribute in 3D, and provide a memory-efficient algorithm to compute it, even for very high moment orders. It satisfies similarity transformations of translation, rotation and scaling invariance and be generalised to higher order moments without performance degradation. We show the utility of the new attribute in the isolation of kidney stones and other structures in 3D CT and MRI images.

Keywords

Moment invariants shape description connected filters attribute filters 3D medical imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand. 64(3), 377–389 (1996)CrossRefGoogle Scholar
  2. 2.
    Eberly, D., Lancaster, J., Alyassin, A.: On gray scale image measurements: II. surface area and volume. CVGIP: Graphical Models and Image Processing 53(6), 550–562 (1991)CrossRefGoogle Scholar
  3. 3.
    Kiwanuka, F.N., Ouzounis, G.K., Wilkinson, M.H.F.: Surface-Area-Based Attribute Filtering in 3D. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 70–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Lindblad, J.: Surface area estimation of digitized 3d objects using weighted local configurations. Image and Vision Computing 23(2), 111–122 (2005); discrete Geometry for Computer ImageryMathSciNetCrossRefGoogle Scholar
  5. 5.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  6. 6.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  7. 7.
    Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: Methodology and application to dermatological imaging. In: Proc. Int. Symp. Math. Morphology, ISMM 2007, pp. 239–250 (2007)Google Scholar
  8. 8.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15, 3531–3539 (2006)CrossRefGoogle Scholar
  9. 9.
    Ouzounis, G.K., Giannakopoulos, S., Simopoulos, C.E., Wilkinson, M.H.F.: Robust extraction of urinary stones from CT data using attribute filters. In: Proc. Int. Conf. Image Proc. 2009, pp. 2629–2632 (2009)Google Scholar
  10. 10.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)CrossRefGoogle Scholar
  11. 11.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6) (2009)Google Scholar
  12. 12.
    Sladoje, N., Nystrom, I., Saha, P.K.: Measurements of digitized objects with fuzzy borders in 2d and 3d. IVC 23, 123–132 (2005)CrossRefGoogle Scholar
  13. 13.
    Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years On, Proc. Int. Symp. Math. Morphology, ISMM 2005, Paris, April 18-20, pp. 95–104 (2005)Google Scholar
  14. 14.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007)CrossRefGoogle Scholar
  15. 15.
    Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters using shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  17. 17.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape Preserving Filament Enhancement Filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Wilkinson, M.H., Ouzounis, G.K.: Advances in connectivity and connected attribute filters. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 161, pp. 211–275. Elsevier (2010)Google Scholar
  19. 19.
    Zunić, J., Hirota, K., Rosin, P.L.: A Hu moment invariant as a shape circularity measure. Pattern Recogn. 43(1), 47–57 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fred N. Kiwanuka
    • 1
    • 2
  • Michael H. F. Wilkinson
    • 1
  1. 1.Institute for Mathematics and Computing ScienceUniversity of GroningenGroningenNetherlands
  2. 2.Faculty of Computing and Information TechnologyMakerere UniversityKampalaUganda

Personalised recommendations