Efficient Comparison of Encrypted Biometric Templates

  • Michael Dorn
  • Peter Wackersreuther
  • Christian Böhm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7449)


Recently, a large amount of security relevant systems assure the permitted access to sensible data by biometric approaches. As also the biometric data itself deserve a high degree of protection, these data are stored encrypted by so-called template protection techniques in the database. But, such an encryption impedes the comparison of two biometric data instances significantly, and therefore we need advanced approaches to apply template protection techniques for identification purposes. In this paper, we present an efficient identification solution that is based on encryped minutiae data of fingerprints, called ECEBT. We evaluate our algorithm on synthetic data concerning multiple noise effects, and on the real world biometric database FVC-2002 DB1 concerning efficiency and effectiveness.


Convex Hull Biometric Data Edit Operation Query Object Biometric Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Juels, A., Sudan, M.: A Fuzzy Vault Scheme. Des. Codes Cryptography 38(2), 237–257 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy Vault for Fingerprints. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-Based Fuzzy Vault: Implementation and Performance. Transactions on Information Forensics and Security 2(4), 744–757 (2007)CrossRefGoogle Scholar
  4. 4.
    Merkle, J., Niesing, M., Schwaiger, M., Ihmor, H., Korte, U.: Performance of the Fuzzy Vault for Multiple Fingerprints. In: BIOSIG, pp. 57–72 (2010)Google Scholar
  5. 5.
    Böhm, C., Färber, I., Fries, S., Korte, U., Merkle, J., Oswald, A., Seidl, T., Wackersreuther, B., Wackersreuther, P.: Filtertechniken für geschützte biometrische Datenbanken. In: BTW, pp. 379–389 (2011)Google Scholar
  6. 6.
    Böhm, C., Färber, I., Fries, S., Korte, U., Merkle, J., Oswald, A., Seidl, T., Wackersreuther, B., Wackersreuther, P.: Efficient Database Techniques for Identification with Fuzzy Vault Templates. In: BIOSIG, pp. 115–126 (2011)Google Scholar
  7. 7.
    Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. JMB 48(3), 443–453 (1970)CrossRefGoogle Scholar
  8. 8.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition (2009)Google Scholar
  9. 9.
    Reed, I.S., Solomon, G.: Polynomial Codes over Certain Finite Fields. In: SIAM, pp. 300–304 (1960)Google Scholar
  10. 10.
    Korte, U., Merkle, J., Niesing, M.: Datenschutzfreundliche Authentisierung mit Fingerabdrücken. Datenschutz und Datensicherheit - DuD 33(5), 289–294 (2009)CrossRefGoogle Scholar
  11. 11.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD, pp. 47–57 (1984)Google Scholar
  12. 12.
    Graham, R.L.: An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Inf. Process. Lett. 1(4), 132–133 (1972)zbMATHCrossRefGoogle Scholar
  13. 13.
    Watson, C.I., Garris, M.D., Tabassi, E., Wilson, C.L., McCabe, R.M., Janet, S., Ko, K.: User’s Guide to NIST Biometric Image Software (NBIS), National Institute of Standards and Technology (2007)Google Scholar
  14. 14.
    Mihailescu, P., Munk, A., Tams, B.: The Fuzzy Vault for Fingerprints is Vulnerable to Brute Force Attack. In: BIOSIG, pp. 43–54 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Dorn
    • 1
  • Peter Wackersreuther
    • 1
  • Christian Böhm
    • 1
  1. 1.Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations