Advertisement

Passive Corruption in Statistical Multi-Party Computation

(Extended Abstract)
  • Martin Hirt
  • Christoph Lucas
  • Ueli Maurer
  • Dominik Raub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7412)

Abstract

The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol that tolerates an adversary corrupting a subset of the parties, preserving certain security guarantees like correctness, secrecy, robustness, and fairness. Corruptions can be either passive or active: A passively corrupted party follows the protocol correctly, but the adversary learns the entire internal state of this party. An actively corrupted party is completely controlled by the adversary, and may deviate arbitrarily from the protocol. A mixed adversary may at the same time corrupt some parties actively and some additional parties passively.

In this work, we consider the statistical setting with mixed adversaries and study the exact consequences of active and passive corruptions on secrecy, correctness, robustness, and fairness separately (i.e., hybrid security). Clearly, the number of passive corruptions affects the thresholds for secrecy, while the number of active corruptions affects all thresholds. It turns out that in the statistical setting, the number of passive corruptions in particular also affects the threshold for correctness, i.e., in all protocols there are (tolerated) adversaries for which a single additional passive corruption is sufficient to break correctness. This is in contrast to both the perfect and the computational setting, where such an influence cannot be observed. Apparently, this effect arises from the use of information-theoretic signatures, which are part of most (if not all) statistical protocols.

Keywords

Multi-party computation passive corruption statistical security hybrid security mixed adversaries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bea89]
    Beaver, D.: Multiparty Protocols Tolerating Half Faulty Processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)Google Scholar
  2. [Bea91]
    Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  3. [BFH+08]
    Beerliová-Trubíniová, Z., Fitzi, M., Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: Perfect Security in a Unified Corruption Model. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 231–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10. ACM (1988)Google Scholar
  5. [BH06]
    Beerliová-Trubíniová, Z., Hirt, M.: Efficient Multi-party Computation with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [CCD88]
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC 1988, pp. 11–19. ACM (1988)Google Scholar
  7. [CDD+99]
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations Secure against an Adaptive Adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)Google Scholar
  8. [Cha89]
    Chaum, D.: The Spymasters Double-Agent Problem: Multiparty Computations Secure Unconditionally from Minorities and Cryptograhically from Majorities. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 591–602. Springer, Heidelberg (1990)Google Scholar
  9. [DDWY93]
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal of the ACM 40(1), 17–47 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [FHHW03]
    Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-Threshold Broadcast and Detectable Multi-party Computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. [FHM98]
    Fitzi, M., Hirt, M., Maurer, U.: Trading Correctness for Privacy in Unconditional Multi-party Computation (Extended Abstract). In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg (1998)Google Scholar
  12. [FHM99]
    Fitzi, M., Hirt, M., Maurer, U.M.: General Adversaries in Unconditional Multi-party Computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [FHW04]
    Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party Computation with Hybrid Security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 419–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM (1987)Google Scholar
  15. [HLMR11]
    Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful Degradation in Multi-Party Computation (Extended Abstract). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 163–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. [HM97]
    Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation. In: PODC 1997, pp. 25–34. ACM (1997)Google Scholar
  17. [HMZ08]
    Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and Computational Security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. [IKLP06]
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On Combining Privacy with Guaranteed Output Delivery in Secure Multiparty Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. [Kat07]
    Katz, J.: On achieving the ”best of both worlds” in secure multiparty computation. In: STOC 2007, pp. 11–20. ACM (2007)Google Scholar
  20. [LRM10]
    Lucas, C., Raub, D., Maurer, U.: Hybrid-secure MPC: Trading information-theoretic robustness for computational privacy. In: PODC 2010, pp. 219–228. ACM (2010)Google Scholar
  21. [Mau02]
    Maurer, U.M.: Secure Multi-party Computation Made Simple. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. [PW92]
    Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  23. [RB89]
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC 1989, pp. 73–85. ACM (1989)Google Scholar
  24. [Sha79]
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Yao82]
    Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Hirt
    • 1
  • Christoph Lucas
    • 1
  • Ueli Maurer
    • 1
  • Dominik Raub
    • 2
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Department of Computer ScienceUniversity of ÅrhusDenmark

Personalised recommendations