Graphs, Networks and Algorithms pp 481-526 | Cite as
A Hard Problem: The TSP
Abstract
In this book, we have concentrated on those optimization problems which allow efficient (that is, polynomial time) algorithms. In contrast, the final chapter deals with an archetypical NP-complete problem: the travelling salesman problem already introduced in Chap. 1. It is one of the most famous and important problems in all of combinatorial optimization—with manyfold applications in such diverse areas as logistics, genetics, telecommunications, and neuroscience—and has been the subject of extensive study for about 60 years. We saw in Chap. 2 that no efficient algorithms are known for NP-complete problems, and that it is actually quite likely that no such algorithms can exist. Now we address the question of how such hard problems—which regularly occur in practical applications—might be approached: one uses, for instance, approximation techniques, heuristics, relaxations, post-optimization, local search, and complete enumeration. We shall explain these methods only for the TSP, but they are typical for dealing with hard problems in general. We will also brie y explain the idea of a further extremely important approach—via polyhedra—to solving hard problems and present a list of notable large scale TSPs which were solved to optimality.
Keywords
Minimal Span Tree Travel Salesman Problem Large Instance Local Search Algorithm Hamiltonian PathReferences
- [AarLe97]Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, New York (1997) MATHGoogle Scholar
- [AppBCC95]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05 (1995) Google Scholar
- [AppBCC98]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Doc. Math. III, 645–656 (1998) (Extra Volume ICM 1998) Google Scholar
- [AppBCC01]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization, pp. 261–304. Springer, Heidelberg (2001) CrossRefGoogle Scholar
- [AppBCC03]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems. Math. Program. 97B, 91–153 (2003) Google Scholar
- [AppBCC04]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde (2004). Available at www.tsp.gatech.edu
- [AppBCC06]Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006) MATHGoogle Scholar
- [Aro98]Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. Assoc. Comput. Mach. 45, 753–782 (1998) MATHCrossRefGoogle Scholar
- [AroSa02]Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. In: Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 2–13 (1992) Google Scholar
- [AroLMS92]Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33th IEEE Symp. on Foundations of Computer Science, pp. 14–23 (1992) Google Scholar
- [BabFLS91]Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 23rd ACM Symp. on Theory of Computing, pp. 21–31 (1991) Google Scholar
- [BabFL91]Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991) MathSciNetMATHCrossRefGoogle Scholar
- [BalFi93]Balas, E., Fischetti, M.: A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets. Math. Program. 58, 325–352 (1993) MathSciNetMATHCrossRefGoogle Scholar
- [BalXu91]Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput. 20, 209–221 (1991) MathSciNetMATHCrossRefGoogle Scholar
- [BalYu86]Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15, 1054–1068 (1986) MathSciNetMATHCrossRefGoogle Scholar
- [Ben90]Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proc. First SIAM Symp. on Discr. Algorithms, pp. 91–99 (1990) Google Scholar
- [BlaSh89]Bland, R.G., Shallcross, D.F.: Large traveling salesman problems arising from experiments in X-ray crystallography: A preliminary report on computation. Oper. Res. Lett. 8, 125–128 (1989) MathSciNetMATHCrossRefGoogle Scholar
- [BoeFW07]Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Oper. Res. 2, 83–93 (2007) MathSciNetMATHGoogle Scholar
- [BoeHS11]Böckenhauer, H.-J., Hromkovič, J., Sprock, A.: Knowing all optimal solutions does not help for TSP reoptimization. In: Springer Lecture Notes in Computer Science, vol. 6610, pp. 7–15 (2011) Google Scholar
- [CamFT89]Carpaneto, G., Fischetti, M., Toth, P.: New lower bounds for the symmetric travelling salesman problem. Math. Program. 45, 233–254 (1989) MathSciNetMATHCrossRefGoogle Scholar
- [ChaGK06]Charikar, M., Hoemans, M.X., Karloff, H.: On the integrality ratio for the asymmetric traveling salesman problem. Math. Oper. Res. 31, 245–252 (2006) MathSciNetMATHCrossRefGoogle Scholar
- [Chr76]Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388, Grad. School of Ind. Admin., Carnegie-Mellon University (1976) Google Scholar
- [Coo12]Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011) Google Scholar
- [CorNe78]Cornuejols, G., Nemhauser, G.L.: Tight bounds for Christofides’ traveling salesman heuristic. Math. Program. 14, 116–121 (1978) MathSciNetMATHCrossRefGoogle Scholar
- [Cro58]Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6, 791–812 (1958) MathSciNetCrossRefGoogle Scholar
- [CroPa80]Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Manag. Sci. 26, 495–509 (1980) MathSciNetMATHCrossRefGoogle Scholar
- [DanFJ54]Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954) MathSciNetCrossRefGoogle Scholar
- [DeiWo00]Deĭneko, V.G., Woeginger, G.: A study of exponential neighborhoods for the travelling salesman problem and for the quadratic assignment problem. Math. Program. 87, 519–542 (2000) MathSciNetMATHCrossRefGoogle Scholar
- [Due93]Dueck, G.: New optimization heuristics: the great deluge algorithm and record-to-record travel. J. Comput. Phys. 104, 86–92 (1993) MATHCrossRefGoogle Scholar
- [DueSc90]Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization algorithm appearing superior to simulating annealing. J. Comput. Phys. 90, 161–175 (1990) MathSciNetMATHCrossRefGoogle Scholar
- [Fie94]Fiechter, C.-N.: A parallel tabu search algorithm for large traveling salesman problems. Discrete Appl. Math. 51, 243–267 (1994) MathSciNetMATHCrossRefGoogle Scholar
- [Fis81]Fisher, M.L.: The Langrangian method for solving integer programming problems. Manag. Sci. 27, 1–18 (1981) MATHCrossRefGoogle Scholar
- [GilPo68]Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968) MathSciNetMATHCrossRefGoogle Scholar
- [Gro80]Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Stud. 12, 61–77 (1980) MATHCrossRefGoogle Scholar
- [Gro84]Grötschel, M.: Developments in combinatorial optimization. In: Jäger, W., Moser, J., Remmert, R. (eds.) Perspectives in Mathematics: Anniversary of Oberwolfach 1984, pp. 249–294. Birkhäuser, Basel (1984) Google Scholar
- [GroHo91]Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991) MATHCrossRefGoogle Scholar
- [GroJR91]Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines: a case study. ZOR, Z. Oper.-Res. 35, 61–84 (1991) MATHGoogle Scholar
- [GroLS93]Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin (1993) MATHCrossRefGoogle Scholar
- [GusPa02]Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002) MATHGoogle Scholar
- [Hal86]Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986) MATHGoogle Scholar
- [HelKa70]Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970) MathSciNetMATHCrossRefGoogle Scholar
- [HelKa71]Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees II. Math. Program. 1, 6–25 (1971) MathSciNetMATHCrossRefGoogle Scholar
- [HelWC74]Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974) MathSciNetMATHCrossRefGoogle Scholar
- [Hel00]Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000) MathSciNetMATHCrossRefGoogle Scholar
- [LawLRS85]Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1985) Google Scholar
- [LecRe89]Leclerc, M., Rendl, F.: Constrained spanning trees and the travelling salesman problem. Eur. J. Oper. Res. 39, 96–102 (1989) MathSciNetMATHCrossRefGoogle Scholar
- [LenRi75]Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the travelling salesman problem. Oper. Res. Q. 26, 717–733 (1975) MATHCrossRefGoogle Scholar
- [Lin65]Lin, S.: Computer solutions of the travelling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965) MATHGoogle Scholar
- [LinKe73]Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman problem. Oper. Res. 31, 498–516 (1973) MathSciNetCrossRefGoogle Scholar
- [LitMSK63]Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the travelling salesman problem. Oper. Res. 11, 972–989 (1963) MATHCrossRefGoogle Scholar
- [MarOF91]Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5, 299–326 (1991) MathSciNetMATHGoogle Scholar
- [Mic92]Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992) MATHGoogle Scholar
- [MicAK07]Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Berlin (2007) MATHGoogle Scholar
- [Mit99]Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for Euclidean TSP, k-MST, and related problems. SIAM J. Comput. 28, 1298–1309 (1999) MathSciNetMATHCrossRefGoogle Scholar
- [MuhGK81]Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combinatorial optimization. Parallel Comput. 7, 65–85 (1988) MATHCrossRefGoogle Scholar
- [Nad90]Naddef, D.: Handles and teeth in the symmetric travelling salesman polytope. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics, pp. 61–74. Am. Math. Soc., Providence (1990) Google Scholar
- [Or76]Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Ph.D. thesis, Northwestern University, Evanston, IL (1976) Google Scholar
- [OrlSh04]Orlin, J.B., Sharma, D.: Extended neighborhood: definition and characterization. Math. Program. 101, 537–559 (2004) MathSciNetMATHCrossRefGoogle Scholar
- [PadHo80]Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: A computational study. Math. Program. Stud. 12, 78–107 (1980) MathSciNetMATHCrossRefGoogle Scholar
- [PadRa74]Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7, 32–45 (1974) MathSciNetMATHCrossRefGoogle Scholar
- [PadRi87]Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric travelling salesman problem. Oper. Res. Lett. 6, 1–7 (1987) MathSciNetMATHCrossRefGoogle Scholar
- [PadRi91]Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale travelling salesman problems. SIAM Rev. 33, 60–100 (1991) MathSciNetMATHCrossRefGoogle Scholar
- [PadSu91]Padberg, M.W., Sung, T.-Y.: An analytical comparison of different formulations of the travelling salesman problem. Math. Program. 52, 315–357 (1991) MathSciNetMATHCrossRefGoogle Scholar
- [Pap78]Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-complete. Math. Program. 14, 312–324 (1978) MathSciNetMATHCrossRefGoogle Scholar
- [Pap92]Papadimitriou, C.H.: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM J. Comp. 21, 450–465 (1992) MathSciNetMATHCrossRefGoogle Scholar
- [PapSt77]Papadimitriou, C.H., Steiglitz, K.: On the complexity of local search for the travelling salesman problem. SIAM J. Comput. 6, 76–83 (1977) MathSciNetMATHCrossRefGoogle Scholar
- [PapSt78]Papadimitriou, C.H., Steiglitz, K.: Some examples of difficult travelling salesman problems. Oper. Res. 26, 434–443 (1978) MathSciNetMATHCrossRefGoogle Scholar
- [PapSt82]Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982) MATHGoogle Scholar
- [PapVe06]Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006) MathSciNetMATHCrossRefGoogle Scholar
- [PapYa93]Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances 1 and 2. Math. Oper. Res. 18, 1–11 (1993) MathSciNetMATHCrossRefGoogle Scholar
- [Pul83]Pulleyblank, W.R.: Polyhedral combinatorics. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 312–345. Springer, Berlin (1983) CrossRefGoogle Scholar
- [Rei94]Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Berlin (1994) Google Scholar
- [RosSL77]Rosenkrantz, D.J., Stearns, E.A., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977) MathSciNetMATHCrossRefGoogle Scholar
- [SahGo76]Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976) MathSciNetMATHCrossRefGoogle Scholar
- [Schr03]Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003) (in 3 volumes) MATHGoogle Scholar
- [Sha79]Shapiro, J.F.: A survey of Langrangian techniques for discrete optimization. Ann. Discrete Math. 5, 113–138 (1979) MathSciNetMATHCrossRefGoogle Scholar
- [ShmWi90]Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp-TSP bound: A monotonicity property with application. Inf. Process. Lett. 35, 281–285 (1990) MathSciNetMATHCrossRefGoogle Scholar
- [Sho85]Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985) MATHCrossRefGoogle Scholar
- [SysDK83]Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete Optimization Algorithms. Prentice Hall, Englewood Cliffs (1983) MATHGoogle Scholar
- [VolJo82]Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric travelling salesman problem based on the 1-tree relaxation. Eur. J. Oper. Res. 9, 83–89 (1982) MathSciNetMATHCrossRefGoogle Scholar
- [Woe03]Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Springer Lect. Notes Comput. Sci., vol. 2570, pp. 185–207 (2003) Google Scholar
- [Woe08]Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156, 397–405 (2008) MathSciNetMATHCrossRefGoogle Scholar
- [Wol80]Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Program. Stud. 13, 121–134 (1980) MathSciNetMATHCrossRefGoogle Scholar
- [Zuc96]Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25, 1293–1304 (1996) MathSciNetMATHCrossRefGoogle Scholar