Service Offer Descriptions and Expressive Search Requests – Key Enablers of Late Service Binding

  • Maciej Zaremba
  • Tomas Vitvar
  • Sami Bhiri
  • Wassim Derguech
  • Feng Gao
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 123)


Late service binding is a long-term goal for Service Computing. It fully enables service loose coupling by allowing service consumers to dynamically identify services at runtime. We present models of expressive search requests and service descriptions enabling matchmaking of highly configurable services whose properties are request-dependent and dynamic. Both models are grounded in lightweight semantic formalisms of RDF and SPARQL, and use Linked Data. Our hierarchical service model provides a foundation for runtime generation of service offer descriptions, while the majority of service models and service matchmaking approaches do not sufficiently address service dynamicity aspects and operate on static service descriptions. We apply our approach to a shipping domain in order to show its feasibility for solving real world problems and its benefits for the late service binding.


Service Computing service modelling late service binding semantic services service discovery highly configurable services 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Cardelli, L.: A Theory of Objects. Springer (1996)Google Scholar
  2. 2.
    Brafman, R.I., Domshlak, C., Shimony, S.: On Graphical Modeling of Preference and Importance. Journal of Artificial Intelligence Research (JAIR) 25, 389–424 (2006)Google Scholar
  3. 3.
    Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Offers on the Web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 329–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    van den Heuvel, W.-J., et al.: Software Service Engineering: Tenets and Challenges. In: ICSE PESOS Workshop (2009)Google Scholar
  5. 5.
    Kopecký, J.J., Simperl, E., Fensel, D.: Semantic Web Service Offer Discovery. In: SMR2 Workshop at International Semantic Web Conference, ISWC (2007)Google Scholar
  6. 6.
    Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based Selection of Highly Configurable Web Services. In: World Wide Web, WWW (2007)Google Scholar
  7. 7.
    Martin, D.L., et al.: Bringing Semantics to Web Services with OWL-S. World Wide Web Journal, 243–277 (2007)Google Scholar
  8. 8.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State of the Art and Research Challenges. IEEE Computer 40, 38–45 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Preist. A Conceptual Architecture for Semantic Web Services (Extended Version), HP Laboratories. In International Semantic Web Conference (ISWC). 2004.CrossRefGoogle Scholar
  10. 10.
    Roman, D., et al.: Web Service Modeling Ontology. Applied Ontologies 1(1) (2005)Google Scholar
  11. 11.
    Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data Services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Treitel, G.H.: The Law of Contract. Sweet & Maxwell (2003)Google Scholar
  13. 13.
    Vu, L.-H., Porto, F., Aberer, K., Hauswirth, M.: An Extensible and Personalized Approach to QoS-enabled Service Discovery. In: IDEA (2007)Google Scholar
  14. 14.
    Zaremba, M., Vitvar, T., Bhiri, S., Hauswirth, M.: Preference-based Discovery of Dynamically Generated Service Offers. In: SCC (2011)Google Scholar
  15. 15.
    Zaremba, M., Vitvar, T., Bhiri, S., Hauswirth, M.: Service Offer Discovery Using Genetic Algorithms. In: ECOWS (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maciej Zaremba
    • 1
  • Tomas Vitvar
    • 2
  • Sami Bhiri
    • 1
  • Wassim Derguech
    • 1
  • Feng Gao
    • 1
  1. 1.Digital Enterprise Research InstituteNational University of Ireland in GalwayIreland
  2. 2.Web Engineering Group Faculty of Information TechnologiesCzech Technical University in PragueCzech Republic

Personalised recommendations