Advertisement

Online Knapsack Problem with Removal Cost

  • Xin Han
  • Yasushi Kawase
  • Kazuhisa Makino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)

Abstract

In this paper, we study the online knapsack problem with removal cost. The input is a sequence of items u 1,u 2,…,u n , each of which has a size and a value, where the value of each item is assumed to be equal to the size. Given the ith item u i , we either put u i into the knapsack or reject it with no cost. When u i is put into the knapsack, some items in the knapsack are removed with removal cost if the sum of the size of u i and the total size in the current knapsack exceeds the capacity of the knapsack. Here the removal cost means a cancellation charge or disposal fee. Our goal is to maximize the profit, i.e., the sum of the values of items in the last knapsack minus the total removal cost occurred.

In this paper, we consider two kinds of removal cost: unit and proportional cost. For both models, we provide their competitive ratios. Namely, we construct optimal online algorithms and prove that they are best possible.

Keywords

Input Sequence Knapsack Problem Competitive Ratio Online Algorithm Matroid Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashwinkumar, B.V.: Buyback Problem - Approximate Matroid Intersection with Cancellation Costs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 379–390. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ashwinkumar, B.V., Kleinberg, R.: Randomized Online Algorithms for the Buyback Problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529–536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: Online algorithms with cancellations. In: ACM Conference on Electronic Commerce, pp. 61–70 (2009)Google Scholar
  4. 4.
    Biyalogorsky, E., Carmon, Z., Fruchter, G.E., Gerstner, E.: Research note: Overselling with opportunistic cancellations. Marketing Science 18(4), 605–610 (1999)CrossRefGoogle Scholar
  5. 5.
    Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for ad slot reservations with cancellations. In: SODA, pp. 1265–1274 (2009)Google Scholar
  6. 6.
    Han, X., Makino, K.: Online Minimization Knapsack Problem. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Han, X., Makino, K.: Online removable knapsack with limited cuts. Theoretical Computer Science 411, 3956–3964 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Iwama, K., Taketomi, S.: Removable online knapsack problems. LNCS, pp. 293–305 (2002)Google Scholar
  9. 9.
    Iwama, K., Zhang, G.: Optimal Resource Augmentations for Online Knapsack. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 180–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)Google Scholar
  11. 11.
    Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. Journal of Algorithms 29(2), 277–305 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Mathematical Programming 68, 73–104 (1995)MathSciNetMATHGoogle Scholar
  13. 13.
    Noga, J., Sarbua, V.: An online partially fractional knapsack problem. In: ISPAN, pp. 108–112 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xin Han
    • 1
  • Yasushi Kawase
    • 2
  • Kazuhisa Makino
    • 2
  1. 1.Dalian University of TechnologyChina
  2. 2.University of TokyoJapan

Personalised recommendations