COCOON 2012: Computing and Combinatorics pp 335-346

# Fáry’s Theorem for 1-Planar Graphs

• Seok-Hee Hong
• Giuseppe Liotta
• Sheung-Hung Poon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)

## Abstract

A plane graph is a graph embedded in a plane without edge crossings. Fáry’s theorem states that every plane graph can be drawn as a straight-line drawing, preserving the embedding of the plane graph. In this paper, we extend Fáry’s theorem to a class of non-planar graphs. More specifically, we study the problem of drawing 1-plane graphs with straight-line edges. A 1-plane graph is a graph embedded in a plane with at most one crossing per edge. We give a characterisation of those 1-plane graphs that admit a straight-line drawing. The proof of the characterisation consists of a linear time testing algorithm and a drawing algorithm. Further, we show that there are 1-plane graphs for which every straight-line drawing has exponential area. To the best of our knowledge, this is the first result to extend Fáry’s theorem to non-planar graphs.

## Preview

### References

1. 1.
Borodin, O.V., Kostochka, A.V., Raspaud, A., Sopena, E.: Acyclic colouring of 1-planar graphs. Discrete Applied Mathematics 114(1-3), 29–41 (2001)
2. 2.
Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear time algorithms for convex drawings of planar graphs. In: Progress in Graph Theory, pp. 153–173. Academic Press (1984)Google Scholar
3. 3.
Chrobak, M., Eppstein, D.: Planar Orientations with Low Out-degree and Compaction of Adjacency Matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)
4. 4.
Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics 307(7-8), 854–865 (2007)
5. 5.
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
6. 6.
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)Google Scholar
7. 7.
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. on Comput. 25(5), 956–997 (1996)
8. 8.
Fáry, I.: On straight line representations of planar graphs. Acta Sci. Math. Szeged 11, 229–233 (1948)
9. 9.
Hong, S., Nagamochi, H.: An algorithm for constructing star-shaped drawings of plane graphs. Comput. Geom. 43(2), 191–206 (2010)
10. 10.
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. on Comput. 2, 135–158 (1973)
11. 11.
Korzhik, V.P., Mohar, B.: Minimal Obstructions for 1-Immersions and Hardness of 1-Planarity Testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 302–312. Springer, Heidelberg (2009)
12. 12.
Kuratowski, K.: Sur le problme des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)
13. 13.
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)Google Scholar
14. 14.
Pach, J., Toth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)
15. 15.
Read, R.C.: A new method for drawing a planar graph given the cyclic order of the edges at each vertex. Congr. Numer. 56, 31–44 (1987)
16. 16.
Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathematics 310(1), 6–11 (2010)
17. 17.
Tutte, W.T.: How to draw a graph. Proc. of the London Mathematical Society 13, 743–767 (1963)

## Authors and Affiliations

• Seok-Hee Hong
• 1