Fáry’s Theorem for 1-Planar Graphs

  • Seok-Hee Hong
  • Peter Eades
  • Giuseppe Liotta
  • Sheung-Hung Poon
Conference paper

DOI: 10.1007/978-3-642-32241-9_29

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)
Cite this paper as:
Hong SH., Eades P., Liotta G., Poon SH. (2012) Fáry’s Theorem for 1-Planar Graphs. In: Gudmundsson J., Mestre J., Viglas T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg

Abstract

A plane graph is a graph embedded in a plane without edge crossings. Fáry’s theorem states that every plane graph can be drawn as a straight-line drawing, preserving the embedding of the plane graph. In this paper, we extend Fáry’s theorem to a class of non-planar graphs. More specifically, we study the problem of drawing 1-plane graphs with straight-line edges. A 1-plane graph is a graph embedded in a plane with at most one crossing per edge. We give a characterisation of those 1-plane graphs that admit a straight-line drawing. The proof of the characterisation consists of a linear time testing algorithm and a drawing algorithm. Further, we show that there are 1-plane graphs for which every straight-line drawing has exponential area. To the best of our knowledge, this is the first result to extend Fáry’s theorem to non-planar graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Seok-Hee Hong
    • 1
  • Peter Eades
    • 1
  • Giuseppe Liotta
    • 2
  • Sheung-Hung Poon
    • 3
  1. 1.University of SydneyAustralia
  2. 2.University of PerugiaItaly
  3. 3.National Tsing Hua UniversityTaiwan

Personalised recommendations