Geometric RAC Simultaneous Drawings of Graphs

  • Evmorfia Argyriou
  • Michael Bekos
  • Michael Kaufmann
  • Antonios Symvonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)


In this paper, we study the geometric RAC simultaneous drawing problem: Given two planar graphs that share a common vertex set but have disjoint edge sets, a geometric RAC simultaneous drawing is a straight-line drawing in which (i) each graph is drawn planar, (ii) there are no edge overlaps, and, (iii) crossings between edges of the two graphs occur at right-angles. We first prove that two planar graphs admitting a geometric simultaneous drawing may not admit a geometric RAC simultaneous drawing. We further show that a cycle and a matching always admit a geometric RAC simultaneous drawing, which can be constructed in linear time.

We also study a closely related problem according to which we are given a planar embedded graph G and the main goal is to determine a geometric drawing of G and its dual G * (without the face-vertex corresponding to the external face) such that: (i) G and G * are drawn planar, (ii) each vertex of the dual is drawn inside its corresponding face of G and, (iii) the primal-dual edge crossings form right-angles. We prove that it is always possible to construct such a drawing if the input graph is an outerplanar embedded graph.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. JGAA 15(1), 53–78 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a Tree and a Path with No Geometric Simultaneous Embedding. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 38–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The Straight-Line RAC Drawing Problem Is NP-Hard. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 74–85. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right Angle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Computational Geometry: Theory and Applications 36(2), 117–130 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Brightwell, G., Scheinerman, E.R.: Representations of planar graphs. SIAM Journal Discrete Mathematics 6(2), 214–229 (1993)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cabello, S., van Kreveld, M.J., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric simultaneous embeddings of a graph and a matching. JGAA 15(1), 79–96 (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, Curve Complexity, and Crossing Resolution of Non-planar Graph Drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 15–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite graphs. Information Processing Letters 110(16), 687–691 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comp. Sci. 412(39), 5156–5166 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. In: 27th European Workshop on Computational Geometry (2011)Google Scholar
  12. 12.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. Theory Computing 38(3), 313–327 (2005)MathSciNetMATHGoogle Scholar
  13. 13.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. JGAA 9(3), 347–364 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous Geometric Graph Embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-simultaneous embeddings. JGAA 13(3), 447–465 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Geyer, M., Kaufmann, M., Vrto, I.: Two trees which are self-intersecting when drawn simultaneously. Discrete Mathematics 309(7), 1909–1916 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: IEEE Pacific Visualization Symp., pp. 41–46. IEEE (2008)Google Scholar
  18. 18.
    van Kreveld, M.: The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–376. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evmorfia Argyriou
    • 1
  • Michael Bekos
    • 2
  • Michael Kaufmann
    • 2
  • Antonios Symvonis
    • 1
  1. 1.School of Applied Mathematical & Physical SciencesNational Technical University of AthensGreece
  2. 2.Institute for InformaticsUniversity of TübingenGermany

Personalised recommendations