A Linear Time Algorithm for Computing Minmax Regret 1-Median on a Tree

  • Binay Bhattacharya
  • Tsunehiko Kameda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7434)

Abstract

In a model of facility location problem, the uncertainty in the weight of a vertex is represented by an interval of weights, and minimizing the maximum “regret” is the goal. The most efficient previously known algorithm for finding the minmax regret 1-median on trees with positive vertex weights takes O(nlogn) time. We improve it to O(n), solving the open problem posed by Brodal et al. in [3].

Keywords

Problem Instance Edge Length Facility Location Problem Vertex Weight Pruning Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Averbakh, I., Berman, O.: Minmax regret median location on a network under uncertainty. INFORMS Journal of Computing 12(2), 104–110 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median problem on a tree. Networks 41, 97–103 (2003)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brodal, G.S., Georgiadis, L., Katriel, I.: An O(n logn) version of the Averbakh–Berman algorithm for the robust median of a tree. Operations Research Letters 36, 14–18 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Burkard, R.E., Dollani, H.: Robust location problems with pos/neg-weights on a tree. Tech. Rep. Diskrete Optimierung Bericht Nr. 148, Karl-Franzens-Universiät Graz & Technische Universiät Graz (1999)Google Scholar
  5. 5.
    Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median problem on a cactus. Computing 60, 193–215 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Networks 31, 93–103 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Goldman, A.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hakimi, S.: Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research 12, 450–459 (1964)MATHCrossRefGoogle Scholar
  9. 9.
    Hale, T.S., Moberg, C.R.: Location science research: A review. Annals of Operations Research 123, 21–35 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, part 2: The p-median. SIAM J. Appl. Math. 37, 539–560 (1979)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in the presence of demand and transportation cost uncertainty. Tech. Rep. Working Paper 93/94-3-4, Department of Management Science. The University of Texas, Austin (1993)Google Scholar
  12. 12.
    Megiddo, N.: Linear-time algorithms for linear-programming in R 3 and related problems. SIAM J. Computing 12, 759–776 (1983)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-center and 1-median problem. ACM Transactions on Algorithms 4(3), 1–1 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Binay Bhattacharya
    • 1
  • Tsunehiko Kameda
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityCanada

Personalised recommendations