Climate Archives

  • Gerrit Lohmann
  • Klaus Grosfeld
  • Dieter Wolf-Gladrow
  • Anna Wegner
  • Justus Notholt
  • Vikram Unnithan
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

After a brief introduction into the marine carbon cycle, the calcite compensation theory and the rain-ratio hypothesis, two theories that may explain glacial to interglacial changes in atmospheric CO2 concentrations are presented. The validity of these theories in the Southern Ocean is tested with B/Ca-reconstructed carbonate ion concentrations of deep and intermediate waters. Deglacial [CO3 2−] excursions reveal a close relationship between changes in the oceanic inorganic carbon system and atmospheric CO2, which follow the predictions of the calcite compensation theory on glacial-interglacial timescales. Short-termed [CO3 2−] variations are likely due to the influence of the biological pump and/or changes in circulation patterns.

Keywords

Dissolve Inorganic Carbon Last Glacial Maximum Total Alkalinity Dust Concentration Annual Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by funding from MARUM. The North-GRIP project was directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It was supported by funding agencies in Denmark(SNF), Belgium (NFSR), France (IFRTP and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MECS), Sweden (SPRS), Switzerland (SNF) and the United States of America (NSF). We wish to thank all the funding bodies and field participants.

References

  1. Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 376:260–263CrossRefGoogle Scholar
  2. Biscaye PE, Grousset FE, Revel M, Van der Gaast S, Zielinski GA, Vaars A, Kukla G (1997) Asian provenance of glacial dust (stage 2) in the Greenland ice sheet project 2 ice core, summit. Greenland J Geophys Res 102:26765–26781CrossRefGoogle Scholar
  3. Bory AM, Biscaye P, Svensson A, Grousset F (2002) Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP. Greenland Earth Plan Sci Lett 196:123–134. doi: 10.1016/S0012-821X(01)00609-4 CrossRefGoogle Scholar
  4. Broecker WS, Peng T-H (1987) The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob Biogeochem Cycles 1:15–29CrossRefGoogle Scholar
  5. Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, New YorkCrossRefGoogle Scholar
  6. Fischer H, Schmitt J, Lüthi D, Stocker TF, Tschumi T, Parekh P, Joos F, Köhler P, Völker C, Gersonde R, Barbante C, Floch ML, Raynaud D, Wolff E (2010) The role of Southern ocean processes on orbital and millennial CO2 variations—a synthesis. Quat Sci Rev 29:193–205CrossRefGoogle Scholar
  7. Foster LC, Finch AA, Allison N, Andersson C, Clarke LJ (2008) Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica Islandica. Chem Geol 254:113–119. doi: 10.1016/j.chemgeo.2008.06.007 CrossRefGoogle Scholar
  8. Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Res 63:752–754Google Scholar
  9. Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Sci Rev 54(1–3):43–80. doi: 10.1016/S0012-8252(01)00041-1 CrossRefGoogle Scholar
  10. Hodell DA, Venz KA, Charles CD, Ninnemann US (2003) Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern ocean. G-cubed. doi: 10.1029/.2002GC000367 Google Scholar
  11. Keir RS (1988) On the late pleistocene ocean geochemistry and circulation. Paleoceanography 3:413–445CrossRefGoogle Scholar
  12. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob Biogeochem Cycles. doi: 10.1029/2004GB002247 Google Scholar
  13. Köhler P, Fischer H, Munhoven G, Zeebe RE (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Glob Biogeochem Cycles. doi: 10.1029/2004GB002345 Google Scholar
  14. Krause-Nehring J, Klügel A, Nehrke G, Brellochs B, Brey T (2011a) Impact of sample pretreatment on the measured element concentrations in the bivalve Arctica islandica. Geochem Geophys Geosyst 12:Q07015. doi: 10.1029/2011GC003630 CrossRefGoogle Scholar
  15. Krause-Nehring J, Thorrold SR, Brey T (2011b) Trace element ratios (Ba/Ca and Mn/Ca) in Arctica islandica shells—is there a clear relationship to pelagic primary production? J Geophys Res-Biogeo (submitted)Google Scholar
  16. Krause-Nehring J, Thorrold SR, Brey T (2012) Centennial records of lead contamination in northern Atlantic bivalves (Arctica islandica). Mar Pollut Bull 64:233–240. doi:  10.1016/j.marpolbul.2011.11.028 Google Scholar
  17. Love KM, Woronow A (1991) Chemical changes induced in aragonite using treatments for the destruction of organic material. Chem Geol 93:291–301. doi: 10.1016/0009-2541(91)90119-C CrossRefGoogle Scholar
  18. Mahowald NM, Yoshioka M, Collins WD, Conley AJ, Fillmore DW, Coleman DB (2006) Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys Res Lett 33. doi: 10.1029/2006GL026126
  19. Marchitto TM, Lynch-Stieglitz J, Hemming SR (2005) Deep Pacific CaCO3 compensation and glacial-interglacial atmospheric CO2. Earth Planet Sci Lett 231:317–336CrossRefGoogle Scholar
  20. Monnin E (2006) EPICA dome C high resolution carbon dioxide concentrations. doi: 10.1594/PANGAEA.47248
  21. Nriagu JO (1990) The rise and fall of leaded gasoline. Sci Total Environ 92:13–28. doi: 10.1016/0048-9697(1090)90318-O CrossRefGoogle Scholar
  22. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Res Pt I(42):641–673CrossRefGoogle Scholar
  23. Pierrot DEL, Wallace DWR (2006) MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a Google Scholar
  24. Raitzsch M, Hathorne EC, Kuhnert H, Groeneveld J, Bickert T (2011) Modern and late pleistocene B/Ca ratios of the benthic foraminifer planulina wuellerstorfi determined with laser ablation ICP-MS. Geology 39:1039–1042CrossRefGoogle Scholar
  25. Roe G (2009) On the interpretation of Chinese loess as a paleoclimate indicator. Quat Res 71:150–161CrossRefGoogle Scholar
  26. Ruth U, Wagenbach D, Steffensen JP, Bigler M (2003) Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J Geophys Res 108:4098–4110. doi: 10.1029/2002JD002376 CrossRefGoogle Scholar
  27. Schöne BR, Houk SD, Castro ADF, Fiebig J, Oschmann W, Kröncke I, Dreyer W, Gosselck F (2005) Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived Bivalve Mollusk. Palaios 20:78–92. doi:10.2110/palo.2003.p2103-2101 Google Scholar
  28. Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466:47–55CrossRefGoogle Scholar
  29. Stecher HA, Krantz DE, Lord CJ, Luther GW, Bock KW (1996) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochim Cosmochim Ac 60:3445–3456. doi: 3410.1016/0016-7037(3496)00179-00172 CrossRefGoogle Scholar
  30. Steffensen JP (1997) The size distribution of microparticles from selected segments of the Greenland ice core project ice core representing different climatic periods. J Geophys Res 102(C12):26755–26764Google Scholar
  31. Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen ML, Svensson A, White JWC (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680–684. doi: 10.1126/science.1157707 CrossRefGoogle Scholar
  32. Wiltshire KH, Dürselen C-D (2004) Revision and quality analyses of the Helgoland Reede long-term phytoplankton data archive. Helgoland Mar Res 58:252–268. doi: 210.1007/s10152-10004-10192-10154 CrossRefGoogle Scholar
  33. Yu J, Elderfield H (2007) Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet Sci Lett 258:73–86CrossRefGoogle Scholar
  34. Zielinski GA, Mershon GR (1997) Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the pleistocene-holocene transition. Geol Soc Am Bull 109:547–559CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Gerrit Lohmann
    • 1
  • Klaus Grosfeld
    • 1
  • Dieter Wolf-Gladrow
    • 1
  • Anna Wegner
    • 1
  • Justus Notholt
    • 2
  • Vikram Unnithan
    • 3
  1. 1.Alfred-Wegener-Institut für Polar und MeeresforschungBremerhavenGermany
  2. 2.Institut für Umweltwissenschaften Universität BremenBremenGermany
  3. 3.Earth and Space Science School of Engineering and Science Jacobs University gGmbHBremenGermany

Personalised recommendations