The Application of Visual Analytics to Financial Decision-Making and Risk Management: Notes from Behavioural Economics

Chapter

Abstract

Understanding how individuals and organizations make financial decisions under uncertainty and with different information settings is fundamental to informing the theory and practice of information management. Due to limitations on cognitive ability and problems of information overload, complex information sets may not be fully understood, resulting in suboptimal economic decision-making. We have applied visual analytics (VA), which enables users to interactively discover information from large information sets, to improve the financial decision-making process. Using an experimental methodology, we find evidence that VA reduces the cost of obtaining information, improves decisions, and increases confidence of users in a range of different financial decision tasks involving risk. This is a nascent area of research, and additional work is needed to develop and evaluate VA tools for financial decision-making and risk management. Best practices guidelines for presenting complex information sets may only develop through rigorous evaluation of the effect of information presentation on actual choice. In addition, the impact of VA in collaborative decision-making environments is not fully understood. The future of applied VA for financial decision-making and risk management must involve an interdisciplinary team of behavioural economists, VA researchers, computer scientists, and cognitive scientists.

References

  1. Andersen S, Harrison GW, Lau MI, Rutström EE (2008) Eliciting risk and time preferences. Econometrica 76:583–618CrossRefGoogle Scholar
  2. Andreoni J, Sprenger C (2010) Estimating time preferences from convex budgets. National Bureau of Economic Research Working Paper No. 16347Google Scholar
  3. Arrow KJ (1965) The theory of risk aversion. In: Aspects of the Theory of Risk Bearing. Yrjo Jahnssonin Saatio, Helsinki. Reprinted in (1971): Essays in the theory of risk bearing. Markham Publ Co, ChicagoGoogle Scholar
  4. Barsky RB, Juster FT, Kimball MS, Shapiro MD (1997) Preference parameters and behavioral heterogeneity: an experimental approach in the health and retirement study. Q J Econ 112:537–579CrossRefGoogle Scholar
  5. Benbunan-Fich R, Hiltz SR, Turoff M (2003) A comparative content analysis of face-to-face vs. asynchronous group decision making. Decis Support Syst 34:457–469. doi:10.1016/S0167-9236(02)00072-6 CrossRefGoogle Scholar
  6. Bornstein G, Yaniv I (1998) Individual and group behavior in the ultimatum game: are groups more “rational” players? Exp Econ 1:101–108. doi:10.1007/BF01426217 Google Scholar
  7. Brodbeck D, Chalmers M, Lunzer A, Cotture P (1997) Domesticating bead: adapting an information visualization system to a financial institution. In: Proceedings of the IEEE symposium on information visualization, pp 73–80. doi:10.1109/INFVIS.1997.636789
  8. Camerer CF (1989) An experimental test of several generalized utility theories. J Risk Uncertain 2:61–104. doi:10.1007/BF00055711 CrossRefGoogle Scholar
  9. Camerer CF, Hogarth RM (1999) The effects of financial incentives in experiments: a review and capital-labor-production framework. J Risk Uncertain 19:7–42CrossRefGoogle Scholar
  10. Capen EC, Clapp RV, Campbell WM (1971) Competitive bidding in high-risk situations. J Petrol Technol 23:641–653Google Scholar
  11. Caplin A, Dean M, Martin D (2009) Search and satisficing. Am Econ Rev (forthcoming)Google Scholar
  12. Casari M, Jackson C, Zhang J (2008) An experiment on risk preferences and strategic abilities (working paper)Google Scholar
  13. Chang R, Ziemkiewicz C, Green TM, Ribarsky W (2009) Defining insight for visual analytics. IEEE Comput Graph 29:14–17. doi:10.1109/MCG.2009.22 CrossRefGoogle Scholar
  14. Cleveland W, Harris C, McGill R (1982) Judgments of circle sizes on statistical maps. J Am Stat Assoc 77:541–547CrossRefGoogle Scholar
  15. Cooper A, Reimann R, Cronin D (2007) About face 3: the essentials of interaction design. Wiley, IndiaGoogle Scholar
  16. Cox JC, Hayne SC (2006) Barking up the right tree: are small groups rational agents? Exp Econ 9:209–222. doi:10.1007/s10683-006-9123-3 CrossRefGoogle Scholar
  17. Csallner C, Handte M, Lehmann O, Stasko J (2003) FundExplorer: supporting the diversification of mutual fund portfolios using context treemaps. In: IEEE symposium on information visualization, pp 203–208. doi: 10.1109/INFVIS.2003.1249027
  18. Davis DD, Holt CA (1993) Experimental economics. Princeton University Press, PrincetonGoogle Scholar
  19. Dufwenberg M, Lindqvist T, Moore E (2005) Bubbles and experience: an experiment. Am Econ Rev 95:1731–1737. doi:10.1257/000282805775014362 CrossRefGoogle Scholar
  20. Einhorn HJ (1970) The use of nonlinear, noncompensatory models in decision making. Psychol Bull 73:221–230CrossRefGoogle Scholar
  21. Einhorn HJ (1971) Use of nonlinear, noncompensatory models as a function of task and amount of information. Organ Behav Hum Perform 6:1–27. doi:10.1016/0030-5073(71)90002-X CrossRefGoogle Scholar
  22. Gigerenzer G, Goldstein D (1996) Reasoning the fast and frugal way: models of bounded rationality. Psychol Rev 103:650–669CrossRefGoogle Scholar
  23. Harrison GW, Rutström EE (2008) Risk aversion in the laboratory. Res Exp Econ 12:41–196. doi:10.1016/S0193-2306(08)00003-3 CrossRefGoogle Scholar
  24. Heer J, Agrawala M (2008) Design considerations for collaborative visual analytics. Inf Vis 7:49–62. doi:10.1145/1391107.1391112 CrossRefGoogle Scholar
  25. Holt CA, Laury SK (2002) Risk aversion and incentive effects. Am Econ Rev 92:1644–1655. doi:10.1257/0002828054201459 CrossRefGoogle Scholar
  26. Hommes C, Sonnemans J, Tuinstra J, van de Velden H (2008) Expectations and bubbles in asset pricing experiments. J Econ Behav Organ 67:116–133. doi:10.1016/j.jebo.2007.06.006 CrossRefGoogle Scholar
  27. Hur I, Yi J (2009) Simulsort: multivariate data exploration through an enhanced sorting technique. In: Jacko J (ed) Human–computer Interaction. Novel interaction methods and techniques. Springer, BerlinGoogle Scholar
  28. Iyengar SS, Lepper MR (2000) When choice is demotivating: can one desire too much of a good thing? J Pers Soc Psychol 79:995–1006. doi:10.1037/0022-3514.79.6.995 CrossRefGoogle Scholar
  29. Jarvenpaa SL (1989) The effect of task demands and graphical format on information processing strategies. Manage Sci 35:285–303. doi:10.1287/mnsc.35.3.285 CrossRefGoogle Scholar
  30. Johansen A, Sornette D (1999) Modeling the stock market prior to large crashes. Eur Phys J B: Condens Matter Complex Syst 9:167–174. doi:10.1007/s100510050752 CrossRefGoogle Scholar
  31. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47:263–291CrossRefGoogle Scholar
  32. Keim DA, Mansmann F, Schneidewind J, Thomas J, Ziegler H (2008) Visual analytics: scope and challenges. In: Visual data mining: theory, techniques and tools for visual analytics. Lecture notes in computer science. Springer, BerlinGoogle Scholar
  33. Kocher MG, Sutter M (2005) The decision maker matters: individual versus group behaviour in experimental beauty-contest games. Econ J 115:200–223. doi:10.1111/j.1468-0297.2004.00966.x CrossRefGoogle Scholar
  34. Lurie NH, Mason CH (2007) Visual representation: implications for decision making. J Mark 71:160–177. doi:10.1509/jmkg.71.1.160 CrossRefGoogle Scholar
  35. Lusardi A, Mitchell OS (2005) Financial literacy and planning: implications for retirement wellbeing. Michigan Retirement Research Center, Working Paper 2005-108Google Scholar
  36. Lybeck JA (2011) A global history of the financial crash of 2007–2010. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Markowitz H (1952) Portfolio selection. J Financ 7:77–91Google Scholar
  38. Parco JE, Rapoport A, Amaldoss W (2005) Two-stage contests with budget constraints: an experimental study. J Math Psychol 49:320–338. doi:10.1016/j.jmp.2005.03.002 Google Scholar
  39. Payne JW, Bettman JR, Johnson EJ (1990) The adaptive decision-maker: effort and accuracy in choice. In: Hogarth RM (ed) Insights in decision-making: A tribute to Hillel J. University of Chicago Press, EinhornGoogle Scholar
  40. Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B (1996) Lifelines: visualizing personal histories. In: Proceedings of the SIGCHI conference on human factors in computing systems 221-ff. doi:10.1145/238386.238493
  41. Porter DP, Smith VL (2003) Stock market bubbles in the laboratory. J Behav Financ 4:7–20. doi:10.1207/S15427579JPFM0401_03CrossRefGoogle Scholar
  42. Pousman Z, Stasko J, Mateas M (2007) Casual information visualization: depictions of data in everyday life. IEEE T Vis Comput Gr 13:1145–1152CrossRefGoogle Scholar
  43. Rudolph S, Savikhin A, Ebert DS (2009) FinVis: applied visual analytics for financial planning. In: IEEE symposium on visual analytics science and technology, pp 195–202. doi:10.1109/VAST.2009.5333920
  44. Samuelson WF, Bazerman MH (1985) The Winner’s curse in bilateral negotiations. Res Exp Econ 3:105–137Google Scholar
  45. Savikhin A (2010) An experimental study of information search and decision-making with interactive technology: presentation based on work in progress with Hur I, Kim S, Yi JS. Purdue University economics department seminar series, March 2010Google Scholar
  46. Savikhin A, Ebert DS (2012) Exploring the effects of visual displays on financial decisions: an experimental study. Working paper, University of ChicagoGoogle Scholar
  47. Savikhin A, Maciejewski R, Ebert DS (2008) Applied visual analytics for economic decision-making. In: IEEE symposium on visual analytics science and technology 2008, pp 107–114. doi:10.1109/VAST.2008.4677363
  48. Savikhin A, Lam HC, Fisher B, Ebert DS (2011) An experimental study of financial portfolio selection with visual analytics for decision support. 44th Hawaii International Conference on Systems Sciences (HICSS) 2011, pp 1–10. doi:10.1109/HICSS.2011.54
  49. Schreck T, Tekusova T, Kohlhammer J, Fellner D (2007) Trajectory-based visual analysis of large financial time series data. ACM SIGKDD Explor Newsl 9:30–37. doi:10.1145/1345448.1345454 CrossRefGoogle Scholar
  50. Sheremeta RM (2010) Experimental comparison of multi-stage and one-stage contests. Game Econ Behav 68:731–747CrossRefGoogle Scholar
  51. Simon HA (1972) Theories of bounded rationality. In: McGuire CG, Radner R (eds) Decision and organization. North-Holland Publishing Company, AmsterdamGoogle Scholar
  52. Simon HA (1987) Models of bounded rationality: empirically grounded economic reason, vol 3. MIT Press, CambridgeGoogle Scholar
  53. Smith VL (1994) Economics in the laboratory. J Econ Perspect 8:113–131CrossRefGoogle Scholar
  54. Stigler GJ (1961) The economics of information. J Polit Econ 69:213–225CrossRefGoogle Scholar
  55. Thomas JJ, Cook KA (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society, Los AlamitosGoogle Scholar
  56. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185:1124–1131. doi:10.1126/science.185.4157.1124 CrossRefGoogle Scholar
  57. Varshney A, Kaufman A (1996) FINESSE: a financial information spreadsheet. In: Proceedings of the IEEE symposium on information visualization, vol 125, pp 70–71. doi:10.1109/INFVIS.1996.559222
  58. Zhang J (2009) Communication in asymmetric group contest over public goods (Working paper)Google Scholar
  59. Ziegler H, Nietzschmann T, Keim D (2008) Visual analytics on the financial market: pixel-based analysis and comparison of long-term investments. In: International conference on information visualisation, pp 287–295. doi:10.1109/IV.2008.80
  60. Zigurs I, Buckland BK (1998) A theory of task/technology fit and group support systems effectiveness. MIS Quart 22:313–334. doi:10.2307/249668 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Human EcologyUniversity of Wisconsin—MadisonMadison USA

Personalised recommendations