Advertisement

The “Azores Geosyndrome” and Plate Tectonics: Research History, Synthesis, and Unsolved Puzzles

  • Peter R. Vogt
  • Woo-Yeol Jung
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

The Azores volcanic archipelago, the Azores Plateau (AP) and the Azores triple junction (ATJ) between the Eurasia, North America and Nubia plates occupy the summit of a regional feature we refer to as the ‘Azores Geosyndrome’. Included are anomalies in crustal thickness, rock composition, basement depth, plate boundary morphology, seismicity, gravity and geoid, and upper mantle seismic velocity structure, and there are many similarities between the Azores and Iceland geosyndromes. The location of the Azores in the central North Atlantic, technological advances in marine geophysics as well as logistic, geomilitary and geopolitical motivations and advanced research of island geology/volcanology have contributed to make the ATJ the most studied oceanic triple plate junction. However, a unified understanding of the Azores Geosyndrome awaits future deep crustal boreholes (particularly on the AP) and regional sea-floor seismometer arrays to resolve the seismic velocity structure below the AP down to the middle and perhaps lower mantle. Whereas a deep mantle plume appears unlikely to exist below the Azores, it cannot yet be excluded (see O’Neill and Sigloch, Chapter “ Crust and Mantle Structure Beneath the Azores Hotspot—Evidence from Geophysics”, and Moreira et al., Chapter “ Noble Gas Constraints on the Origin of the Azores Hotspot”). What is already clear is that the development and evolution of the Azores Geosyndrome has involved dynamic interactions among the North America-Nubia-Eurasia plates and at least the uppermost mantle below those plates—even far from the ATJ area. The plate boundary reorganization that resulted in the triple plate junction jumping from the end of King’s Trough south to create the ATJ was largely complete by Chron 6C (23 Ma) and coincided within dating uncertainties with the jump of the spreading plate boundary from the Norway Basin to the new Kolbeinsey Ridge just north of Iceland. Major geological changes in the Pyrenees and Alpine Tethys region at that time have long been known. In fact, the Palaeogene-Neogene boundary, a time of global change in planktonic biogeography, is placed at 23.0 Ma, in the upper part of C6C. Why the ATJ developed where it did and not elsewhere along the MAR suggests the lithosphere and subjacent mantle had already created a region of plate weakness. The subsequent development of the AP, largely via Mid-Atlantic Ridge spreading, produced a thick crust and more fertile mantle lithosphere-particularly from ca. 12 to 8 Ma. This mantle lithosphere was and continues to be relatively weak and fertile, favouring transtensional fissuring, formation of central volcanoes, as well as oblique hyperslow spreading along the Terceira Rift—particularly in the last 1.5 Ma.

Notes

Acknowledgements

We thank Robert I. Tilling and J. Miguel Miranda for thoughtful reviews (2014), and editors Ulrich Kueppers and Christoph Beier for inviting us to contribute this chapter. The chapter was updated in November-December, 2016. Joaquim Luis generously allowed us to reproduce his high-resolution hillshade topography of the triple junction region (Fig. 3d).

References

  1. Abdel-Monem, A. A., Fernandez, L. A., & Boone, G. M. (1975). K-Ar ages for the eastern Azores group (Santa Maria, São Miguel and the Formigas Islands). Lithos, 8, 247–254.CrossRefGoogle Scholar
  2. Adam, C., Madureira, P., Miranda, J. M., Lourenco, N., Yoshida, M., & Fitzenz, D. (2013). Mantle dynamics and characteristics of the Azores Plateau. Earth and Planetary Science Letters, 362, 258–271.CrossRefGoogle Scholar
  3. Anderson, D. (2005). Scoring hotspots: The plume and plate paradigms. In G. R. Foulger, J. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms. Geological Society of America Special Paper 388, 31–54.Google Scholar
  4. Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12, Q11001.CrossRefGoogle Scholar
  5. Bastos, L., Osorio, J., Barbeito, A., & Hein, A. (1998). Results from geodetic measurements in the western part of the African-Eurasian plate boundary. Tectonophysics, 294, 261–269.CrossRefGoogle Scholar
  6. Beier, C., Haase K. M., & Abouchami, W. (2015). Geochemical and geochronological constraints on the evolution of the Azores Plateau. In C. R. Neal, W. Sager, E. Erba, & T. Sano (Eds.), The origin, evolution, and environmental impact of oceanic large igneous provinces. Geological Society of America Special Paper 511, 1–29.Google Scholar
  7. Beier, C., Haase, K. M., Abouchami, W., Krienitz, M. S., & Hauff, F. (2008). Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 9, Q12013.Google Scholar
  8. Beier, C., Haase, K. M., & Turner, S. P. (2012). Conditions of melting beneath the Azores. Lithos, 144–145, 1–11.  https://doi.org/10.1016/j.lithos.2012.02.019.CrossRefGoogle Scholar
  9. Bezzeghoud, M., Adam, C., Buform, E., Borgos, J. F., & Caldeira, B. (2014). Seismicity along the Azores-Gibraltar region and global plate kinematics. Journal of Seismology, 18, 205–220.CrossRefGoogle Scholar
  10. Borges, J. F., Bezzeghoud, M., Buforn, E., Pro, C., & Fritas, A. (2007). The 1980, 1997 and 1998 Azores earthquakes and some seismo-tectonic implications. Tectonophysics, 435, 37–54.CrossRefGoogle Scholar
  11. Buforn, E., Udias, A., & Colombas, M. A. (1988). Seismicity source mechanisms and tectonics of the Azores-Gibraltar plate boundary. Tectonophysics, 152, 89–118.CrossRefGoogle Scholar
  12. Calvert, A. T., Moore, R. B., McGeehin, J. P., & Rodrigues da Silva, A. M. (2006). Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal. Journal of Volcanology and Geothermal Research, 156, 103–115.CrossRefGoogle Scholar
  13. Campan, A., Royer J.-D., Gente P., Olivet J.-L., & Mueller, R. D. (1993). Evolution of the Azores-Gibraltar plate boundary for the last 36 Ma. Eos [Transactions of the American Geophysical Union], 74, p. 586.Google Scholar
  14. Cannat, M., Briais, A., Deplus, C., Escartin, J., Georgen, J., Lin, J., et al. (1999). Mid-Atlantic Ridge-Azores hotspot interaction: Along-axis migration of a hotspot-derived event of enhanced magmatism, 10 to 4 Ma ago. Earth and Planetary Science Letters, 173, 395–406.CrossRefGoogle Scholar
  15. Carminati, E., & Doglioni, C. (2010). North Atlantic geoid high, volcanism and glaciations, Geophysical Research Letters, L3302.Google Scholar
  16. Carmo, R., Madeira, J., Ferreira, T., Queiros, G., & Hipolito, A. (2015). Chapter 6: Volcano-tectonic structures of São Miguel Island, Azores, Geological Society, London, Memoirs, 44, 65–86.Google Scholar
  17. Casalbore, D., Romagnoli, C., Pimentel, A., Quartau, R., Casas, D., Ercilla, G., et al. (2015). Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bulletin of Volcanology, 77, 24.CrossRefGoogle Scholar
  18. Catalao, J., Miranda, J. M., & Lourenco, N. (2006). Deformation associated with the Faial (Capelhinhos) 1957-1958 eruption: Inferences from 1937-1997 geodetic measurements. Journal of Volcanology and Geothermal Research, 155, 151–163.CrossRefGoogle Scholar
  19. Corti, G. (2008). Control of rift obliquity on the evolution and segmentation of the main Ethiopian Rift. Nature Geoscience, 1(4), 258–262.CrossRefGoogle Scholar
  20. Costa, A. C. G., Marques, F. O., Hildenbrand, A., Sibrant, A. L. R., & Catita, C. M. S. (2014). Large-scale catastrophic flank collapses in a steep volcanic ridge: The Pico-Faial Ridge, Azores Triple Junction. Journal of Volcanology and Geothermal Research, 272, 111–125.CrossRefGoogle Scholar
  21. Courtillot, V., Davaille, A., Besse, J., & Stock, J. M. (2003). Three types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205, 295–308.CrossRefGoogle Scholar
  22. Dalrymple, G. B. (1991). The age of the earth (474p). Stanford, CA: Stanford University Press.Google Scholar
  23. Davaille, A., Stutzmann, E., Silveira, G., Besse, J., & Courtillot, V. (2005). Convective patterns under the Indo-Atlantic. Earth and Planetary Science Letters, 239, 233–252.CrossRefGoogle Scholar
  24. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 81, 1–80.CrossRefGoogle Scholar
  25. DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478.CrossRefGoogle Scholar
  26. Dias, N. A., Matias, L., Lourenco, N., Madeira, J., Carrilho, F., & Gaspar, J. L. (2007). Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography. Tectonophysics, 445, 301–317.CrossRefGoogle Scholar
  27. Dietz, R. S. (1961). Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–857.CrossRefGoogle Scholar
  28. Dosso, L., Bougault, H., Langmuir, C., Bollinger, C., Bonnier, O., & Etoubleau, J. (1999). The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31°-41° N). Earth and Planetary Science Letters, 170, 269–286.CrossRefGoogle Scholar
  29. Earnes, F. E. (1970). Some thoughts on the Neogene-Palaeogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 8, 37–48.CrossRefGoogle Scholar
  30. Elderfield, H., Ferratti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., et al. (2012). Ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science, 337, 704–709.CrossRefGoogle Scholar
  31. Escartin, J., Cannat, M., Pouliquen, G., Rabain, A., & Lin, J. (2001). Crustal thickness of V-shaped ridges south of the Azores: Interactions of the Mid-Atlantic Ridge (36°-39° N) with the Azores hot spot. Journal of Geophysical Research, 106, 21719–21755.CrossRefGoogle Scholar
  32. Ewing, M., & Heezen, B. (1956). Mid-Atlantic seismic belt (Abstract). Transactions of the American Geophysical Union, 37, 343.CrossRefGoogle Scholar
  33. Fernandes, R. M. S., Bastos, L., Miranda, J. M., Lourenco, N., Ambrosius, B. A. C., Noomen, R., et al. (2006). Defining plate boundaries in the Azores region. Journal of Volcanology and Geothermal Research, 156, 1–9.CrossRefGoogle Scholar
  34. Forjaz, V. H., Franca, Z. T. M., Tavares, J. M., Almeida, I. M., & Rodrigues, J. A. (2010). Dos Vulcoes dos Acores (From the Azores Volcanoes) (2nd ed., 167p), Ponta Delgada: Publicor.Google Scholar
  35. Gaspar, J. L., Queiros, G., Ferreira, T., Amaral, P., Viveiros, F., Marques, R., Silva, C., & Wallenstein, N. (2011). Geological hazards and monitoring at the Azores (Portugal). Earthzine (13p), posted 12 April 2011.Google Scholar
  36. Gaspar, J. L., Queiros, G., Ferreira, T., Medeiros, A. R., Goulart, C., & Madeiros, J. (2015). Chapter 4: Earthquakes and volcanic eruptions in the Azores region: Geodynamic implications from major historical events and instrumental seismicity. Geological Society of London, Memoir, 44, 33–49.CrossRefGoogle Scholar
  37. Gente, P., Dyment, J., Maia, M., & Goslin, J. (2003). Interactions between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochemistry, Geophysics and Geosystems, 4(10), 8514.CrossRefGoogle Scholar
  38. Georgen, J. E., & Sankar, R. D. (2010). Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: Implications for the Azores Plateau. Earth and Planetary Science Letters, 298, 23–34.CrossRefGoogle Scholar
  39. Glenn, M. F. (1970). Introducing an operational multi-beam array sonar. International Hydrographic Review, 47, 35–40.Google Scholar
  40. Goslin, J., & Party, T. S. (1999). Extent of Azores plume influence on the Mid-Atlantic Ridge north of the hotspot. Geology, 27, 991–994.CrossRefGoogle Scholar
  41. Grevemeyer, I. (1999). Isostatic geoid anomalies over mid-plate swells in the Central North Atlantic. Journal of Geodynamics, 28(1), 41–50.CrossRefGoogle Scholar
  42. Grimison, N. I., & Chen, W. P. (1986). The Azores-Gibraltar plate boundary: Focal mechanisms, depths of earthquakes and their tectonic implications. Journal of Geophysical Research, 91, 2029–2047.CrossRefGoogle Scholar
  43. Grimison, N. I., & Chen, W. P. (1988). Source mechanisms for four recent earthquakes along the Azores-Gibraltar plate boundary. Geophysical Journal International, 92, 391–401.Google Scholar
  44. Gripp, A. E., & Gordon, R. G. (2002). Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150, 321–361.CrossRefGoogle Scholar
  45. Gutenberg, B., & Richter C. F. (1941). Seismicity of the Earth. Geological Society of America Special Paper 34, 125p.Google Scholar
  46. Heezen, B. C., Tharp, M., & Ewing, M. (1959). The floors of the oceans, I, the North Atlantic. Geological Society of America Special Paper 65, 122p.Google Scholar
  47. Hess, H. H. (1959). Nature of the great oceanic ridges. International Oceanographic Congress (Abstract) (pp. 33–34).Google Scholar
  48. Hey, R. N. (1977). A new class of pseudo-faults and their bearing on plate tectonics: A propagating rift model. Earth and Planetary Science Letters, 37, 321–325.CrossRefGoogle Scholar
  49. Hildenbrand, A., Madureira, P., Marques, F. O., Cruz, I., Henry, B., & Silva, P. (2008). Multistage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth and Planetary Science Letters, 273, 289–298.CrossRefGoogle Scholar
  50. Hildenbrand, A. P., Weis, D., Madureira, P., & Marques, F. O. (2014). Recent plate re-organization at the Azores Triple Junction: Evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira Volcanic Islands. Lithos, 210–211, 27–39.CrossRefGoogle Scholar
  51. Hipolito, A., Madeira, J., Carmo, R., & Gaspar, J. L. (2013). Neotectonics of Graciosa Island (Azores): A contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting. Annals of Geophysics, 56.Google Scholar
  52. Hirn, A., Haessler, A., Hoang Trong, P., Wittlinger, G., & Mendes Victor, L. A. (1980). Aftershock sequence of the January 1st, 1980, earthquake and present-day tectonics in the Azores. Geophysical Research Letters, 7(501), 504.Google Scholar
  53. Holmes, A. (1929). Radioactivity and earth movements. Geological Society of Glasgow Transactions, 18, 559–606.CrossRefGoogle Scholar
  54. Isacks, B. J., Oliver, J., & Sykes, L. R. (1968). Seismology and the new global tectonics. Journal of Geophysical Research, 73, 5855–5899.CrossRefGoogle Scholar
  55. Johnson, G. J., Wijbrans, J. R., Constable, C. G., Gee, J., Staudigel, H., Tauxe, L., et al. (1998). 40Ar/39Ar ages and paleomagnetism of São Miguel lavas, Azores. Earth and Planetary Science Letters, 160, 637–649.CrossRefGoogle Scholar
  56. Kennett, J. P. (1978). The development of planktonic biogeography during the Cenozoic. Marine Micropaleontology, 3, 301–345.CrossRefGoogle Scholar
  57. Kidd, R., & Ramsay, A. T. S. (1987). The Geology and formation of the King’s Trough Complex in the light of Deep Sea Drilling Project Site 608. In W. F. Ruddiman, R. B. Kidd, & E. Thomas (Eds.), Initial Reports of the Deep Sea Drilling Reports, Leg 94, Part 2, Washington, U.S. Printing Office, pp. 1245–1261.Google Scholar
  58. Klitgord, K. D., & Schouten, H. (1986). Plate kinematics of the central Atlantic. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 351–378).Google Scholar
  59. Knauss, J. (1986). The juridical ocean basin. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geologic Society of America (pp. 677–687).Google Scholar
  60. Krause, D. C., & Watkins, N. D. (1970). North Atlantic crustal genesis in the vicinity of the Azores. Geophysical Journal of the Royal Astronomical Society, 19, 261–283.CrossRefGoogle Scholar
  61. Larrea, P., Wijbrans, P. R., Gale, C., Ubide, T., Lago, M., Franza, Z., et al. (2014). 40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal). Bulletin of Volcanology, 76, 796.CrossRefGoogle Scholar
  62. Laughton, A. S., & Whitmarsh, R. B. (1974). The Azores-Gibraltar plate boundary. In L. Kristjannson (Ed.), Geodynamics of Iceland and the North Atlantic Area (pp. 63–81). Dordrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
  63. LePichon, X. (1968). Sea-floor spreading and continental drift. Journal of Geophysical Research, 73, 3661–3697.CrossRefGoogle Scholar
  64. Louden, K. E., Tucholke, B. E., & Oakey, G. N. (2004). Regional anomalies of sediment thickness, basement depth, and isostatic crustal thickness in the North Atlantic Ocean. Earth and Planetary Science Letters, 224, 193–211.CrossRefGoogle Scholar
  65. Lourenco, N., Miranda, J. M., Luis, J. F., Ribeiro, A., Mendes Victor, L. A., Madeira, J., et al. (1998). Morpho-tectonic analysis of the Azores volcanic plateau from a new bathymetric compilation of the area. Marine Geophysical Researches, 20(3), 141–156.CrossRefGoogle Scholar
  66. Luis, J. F., & Miranda, J. M. (2008). Reevaluation of magnetic chrons in the North Atlantic between 35°N and 47°N: Implications for the formation of the Azores Triple Junction and associated plateau. Journal of Geophysical Research, 113, B10105 (12p).Google Scholar
  67. Luis, J. F., Miranda, J. M., Galdeano, A., & Patriat, P. (1998). Constraints on the structure of the Azores spreading center from gravity data. Marine Geophysical Researches, 20, 157–170.CrossRefGoogle Scholar
  68. Luis, J. F., Miranda, J. M., Patriat, P., Galdeano, A., Rossignol, J. C., & Mendes Victor, L. A. (1994). Azores triple junction evolution in the last 10 Ma from a new aeromagnetic survey. Earth and Planetary Science Letters, 125, 439–459.CrossRefGoogle Scholar
  69. Madeira, J., Brum da Silveira, A., Hipolito, A., & Carmo, R. (2015). Chapter 3: Active tectonics in the central and eastern Azores islands along the Eurasia-Nubia plate boundary: A review. Geological Society, London, Memoirs, 44, 15–32.CrossRefGoogle Scholar
  70. Madureira, P., Mata, J., Mattielli, N., Queiroz, G., & Silva, P. (2011). Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos, 126, 402–418.CrossRefGoogle Scholar
  71. Madureira, P., Moreira, M., Mata, J., Nunes, J. C., Gautheron, C., Lourenco, N., et al. (2014). Helium isotope systematics in the vicinity of the Azores Triple Junction: Constraints on the Azores geodynamics. Chemical Geology, 372, 62–71.CrossRefGoogle Scholar
  72. Magde, L. S., & Sparks, D. W. (1997). Three-dimensional mantle upwelling, melt generation, and melt migration beneath segmented slow spreading ridges. Journal of Geophysical Research, 102(B9), 20571–20583.CrossRefGoogle Scholar
  73. Marques, F. O., Catalao, J. C., DeMets, C., Costa, A. C. G., & Hildenbrand, A. (2013). GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction. Earth and Planetary Science Letters, 381, 177–187.CrossRefGoogle Scholar
  74. Marques, F. O., Catalao, J. C., DeMets, C., Costa, A. C. G., & Hildenbrand, A. (2014). Corrigendium to “GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction”. Earth and Planetary Science Letters, 387, 1–3.CrossRefGoogle Scholar
  75. Matias, L., Dias, N. A., Morais, L., Vales, D., Carrilho, F., Madeira, J., et al. (2007). The 9th of July 1998 Faial Island (Azores, North Atlantic) seismic sequence. Journal of Seismology, 11, 275–298.CrossRefGoogle Scholar
  76. Maury, M. F. (1855). The physical geography of the Sea, Harper and Brothers, New York, 287p.Google Scholar
  77. McKenzie, D. F. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109–185.CrossRefGoogle Scholar
  78. McKenzie, D. F., & Morgan, W. J. (1969). Evolution of triple junctions. Nature, 224, 125–133.CrossRefGoogle Scholar
  79. Menard, H. W. (1965). Sea floor relief and mantle convection. Physics and Chemistry of the Earth, 6, 315–364.CrossRefGoogle Scholar
  80. Menard, H. W., & Atwater, T. (1968). Changes in the direction of sea floor spreading. Nature, 219, 463–467.CrossRefGoogle Scholar
  81. Mendes, V. B., Madeira, J., Brum da Silveira, A., Trota, A., Elosegui, P., & Pagarete, J. (2013). Present-day deformation in São Jorge Island, Azores, from episodic GPS Measurements (2001-2011). Advances in Space Research, 51, 1581–1592.CrossRefGoogle Scholar
  82. Merkouriev, S., & DeMets, C. (2008). A high-resolution model for Eurasia-North America plate kinematics since 20 Ma. Geophysical Journal International, 173, 1064–1083.CrossRefGoogle Scholar
  83. Merkouriev, S., & DeMets, C. (2014a). High-resolution estimates of Nubia-North America plate motion: 20 Ma to present. Geophysical Journal International, 196, 1281–1298.CrossRefGoogle Scholar
  84. Merkouriev, S., & DeMets, C. (2014b). High-resolution Neogene reconstructions of Eurasia-North America Plate motion. Geophysical Journal International, 198, 366–384.CrossRefGoogle Scholar
  85. Metrich, N., Zanon, V., Creon, L., Hildenbrand, A., Moreira, M., & Marques, F. O. (2014). Is the “Azores Hotspot” a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. Journal of Petrology, 55, 377–393.CrossRefGoogle Scholar
  86. Minster, J. B., & Jordan, T. H. (1978). Present day plate motions. Journal of Geophysical Research, 83(B11), 5331–5354.CrossRefGoogle Scholar
  87. Miranda, J. M., Freire Luis, J., Abreu, A., Mendes Victor, L. A., Galdeano, A., & Rossignol, J. C. (1991). Tectonic framework of the Azores Triple Junction. Geophysical Research Letters, 18, 1421–1424.CrossRefGoogle Scholar
  88. Miranda, J. M., & Luis, J. F. (2013). Changes in the Mid-Atlantic Ridge spreading velocity during the last 20 Ma (unpublished manuscript).Google Scholar
  89. Miranda, J. M., Luis, J. F., Lourenco, N., & Fernandes, R. M. S. (2015). Chapter 2: The structure of the Azores Triple Junction: Implications for São Miguel Island. Geological Society of London, Memoirs, 5–13.Google Scholar
  90. Miranda, J. M., Luis, J. F., Lourenco, N., & Goslin, J. (2014). Distributed deformation close to the Azores Triple “Point”. Marine Geology, 355, 27–35.CrossRefGoogle Scholar
  91. Miranda, J. M., Mendes Victor, L. A., Simoes, J., Luis, J., Matias, L., Shimamura, H., et al. (1998). Tectonic setting of the Azores Plateau deduced from a OBS survey. Marine Geophysical Researches, 20(3), 171–182.CrossRefGoogle Scholar
  92. Miranda, J. M., Navarro, A., Catalao, J., & Fernandes, R. M. S. (2012). Surface displacement field at Terceira island deduced from repeated GPS measurements. Journal of Volcanology and Geothermal Research, 217–218, 1–7.CrossRefGoogle Scholar
  93. Morgan, W. J. (1968). Rises, trenches, great faults and crustal blocks. Journal of Geophysical Research, 73, 1959–1982.CrossRefGoogle Scholar
  94. Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. Bulletin of the American Association of Petroleum Geologists, 56, 203–312.Google Scholar
  95. Morgan, W. J. (1978). Darwin, Rodriguez, Amsterdam…a second type of hotspot island. Journal of Geophysical Research, 83, 5355–5360.CrossRefGoogle Scholar
  96. Morley, L. W., & Larochelle, A. (1964). Paleomagnetism as a means to dating geologic events. Royal Society of Canada, Special Publication, 8, 512–521.Google Scholar
  97. Navarro, A., Lourenco, N., Chorowicz, J., Miranda, J. M., & Catalao, J. (2009). Analysis of geometry of volcanoes and faults in Terceira Island (Azores): Evidence for reactivation tectonics at the EUR/AFR plate boundary in the Azores Triple Junction. Tectonophysics, 465, 98–113.CrossRefGoogle Scholar
  98. Neves, M. C., Miranda, J. M., & Luis, J. F. (2013). The role of lithospheric processes on the development of linear volcanic ridges in the Azores. Tectonophysics, 608, 376–388.CrossRefGoogle Scholar
  99. Phillips, J. D., & Fleming H. F. (1978). Multi-beam sonar study of the Mid-Atlantic Ridge rift valley, 36°-37° N, Map and Chart Series MC-19, Geological Society of America.Google Scholar
  100. Phillips, J. D., Fleming, H. S., Feden, R. H., King, W. E., & Perry, R. K. (1975). Aeromagnetic study of the Mid-Atlantic Ridge near the Oceanographer Fracture Zone. Geological Society of America Bulletin, 86, 1348–1357.CrossRefGoogle Scholar
  101. Phipps Morgan, J., & Chen, Y. (1993). Dependence of ridge-axis morphology on magma supply and spreading rate. Nature, 364, 706–708.CrossRefGoogle Scholar
  102. Pitman, W. C., III, & Talwani, M. (1972). Seafloor spreading in the North Atlantic. Geological Society of America Bulletin, 83, 619–646.CrossRefGoogle Scholar
  103. Rabinowitz, P. D., & Jung, W.-Y. (1986). Gravity anomalies in the Western Atlantic Ocean. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 205–214).Google Scholar
  104. Roest, W. R., & Srivastava, S. P. (1991). Kinematics of the plate boundary between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology, 19, 613–616.CrossRefGoogle Scholar
  105. Runcorn, S. K. (1956). Palaeomagnetism, polar wandering, and continental drift. Geologie en Mijnbow, 18, 253–256.Google Scholar
  106. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi-resolution topography synthesis, Geochemistry, Geophysics, Geosystems, 10(3).  https://doi.org/10.1029/2008gc002332.
  107. Saemundson, K. (1986). Chapter 5: Subaerial volcanism in the Western North Atlantic, In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 69–86).Google Scholar
  108. Sager, W. W. (2005). What built the Shatsky Rise, a mantle plume or ridge tectonics? In G. R. Foulger, G. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms, Geological Society of America Special Paper 388, 721–733.Google Scholar
  109. Santos, R. S., Tempera, P., Menezes, G., Porteiro, F., & Morato, T. (2010). Spotlight 12: Sedlo Seamount. Oceanography, 23, 202–203.CrossRefGoogle Scholar
  110. Schilling, J. G. (1976). Azores mantle blob: Rare earth evidence. Earth and Planetary Science Letters, 25, 103–115.CrossRefGoogle Scholar
  111. Schilling, J. G. (1986). Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° N to 0° N. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M. The Western North Atlantic Region, Geological Society of America (pp. 137–156).Google Scholar
  112. Schouten, H., Klitgord, K. D., & Whitehead, J. A. (1985). Segmentation of mid-ocean ridges. Nature, 317(6034), 225–229.CrossRefGoogle Scholar
  113. Sclater, J. G., Anderson, R. N., & Bell, M. L. (1971). The elevation of ridges and the evolution of the central eastern Pacific. Journal of Geophysical Research, 76, 7888–7915.CrossRefGoogle Scholar
  114. Searle, R. C. (1980). Tectonic pattern of the Azores spreading center and triple junction. Earth and Planetary Science Letters, 51, 415–434.CrossRefGoogle Scholar
  115. Sibrant, A. L. R., Hildenbrand, A., Marques, F. O., & Costa, A. C. G. (2015). Volcano-tectonic evolution of the Santa Maria Island (Azores): Implications for paleostress evolution at the western Eurasia-Nubia plate boundary. Journal of Volcanology and Geothermal Research, 291, 49–62.CrossRefGoogle Scholar
  116. Sibrant, A. L. R., Marques, F. O., & Hildenbrand, A. (2014). Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores. Journal of Volcanology and Geothermal Research, 284, 32–45.CrossRefGoogle Scholar
  117. Sibrant, A. L. R., Marques, F. O., Hildenbrand, A., Boulesteix, T., Costa, A. C. G., & Catalao, J. (2016). Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores). Tectonics, 35, 425–446.CrossRefGoogle Scholar
  118. Silveira, G., Stutzmann, E., Davaille, A., Montagner, J.-P., Mendes-Victor, L., & Sebai, A. (2006). Azores hotspot signature in the upper mantle. Journal of Volcanology and Geothermal Research, 156, 23–34.CrossRefGoogle Scholar
  119. Simkin, T., Tilling, R. I., Vogt, P. R., Kirby, S. H., Kimberly, P., & Stewart, D. B. (2006). This dynamic planet: World map of volcanoes, earthquakes, impact craters, and plate tectonics. U.S. Geological Survey Geologic Investigations Series Map I-2800.Google Scholar
  120. Sloan, H., & Patriat, P. (1992). Kinematics of the North American-African plate boundary between 28° N and 29° N during the last 10 Ma: Evolution of the axial geometry and spreading rate and direction. Earth and Planetary Science Letters, 113, 323–341.CrossRefGoogle Scholar
  121. Smith, A. (1971). Alpine deformation and the oceanic areas of the Tethys, Mediterranean, and Atlantic. Geological Society of America Bulletin, 82, 2039–2070.CrossRefGoogle Scholar
  122. Smith, W., & Sandwell, D. (1997). Global seafloor bathymetry from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.CrossRefGoogle Scholar
  123. Srivastava, S. P., & Tapscott, C. R. (1986). Plate kinematics of the North Atlantic. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geologic Society of America (pp. 379–404).Google Scholar
  124. Srivastava, S. P., Roest, W. R., Kovacs, L. C., & Oakey, G. (1990). Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics, 84, 229–260.Google Scholar
  125. Stocks, T., & Wuest, G. (1935). Die Tiefenverhaeltnisse des offenen Atlantischen Ozeans, Deutsche Atlantische Expedition METEOR 1925-1927, Wissenschaftliche Ergebisse, 3, Teil 1,1. Lieferung, 31p.Google Scholar
  126. Tams, E. (1927). Die seismischen Verhaeltnisse des offenen Atlantischen Ozeans. Gerlands Beitraege zur Geophysik, 18, 319–353.Google Scholar
  127. Tempera, F., Hipolito, A., Madeira, J., Vieira, S., Campos, A. S., & Mitchell, N. C. (2013). Condor Seamount (Azores, NE Atlantic): A morpho-tectonic interpretation. Deep-Sea Research II, 98, 7–23.CrossRefGoogle Scholar
  128. Tucholke, B. E., & Vogt, P. R. (Eds.). (1979). Initial Reports of the Deep Sea Drilling Project, v. 43, U.S. Government Printing Office, Washington, D.C., 1115p.Google Scholar
  129. Udias, A., Lopez Arroyo, A., & Mezcua, J. (1976). Seismotectonics of the Azores-Alborean región. Tectonophysics, 31, 259–289.CrossRefGoogle Scholar
  130. Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.CrossRefGoogle Scholar
  131. Vink, G. E., Morgan, W. J., & Zhen, W. I. (1984). Preferential rifting of continents: A source of displaced terranes. Journal of Geophysical Research, 89, 10072–10076.CrossRefGoogle Scholar
  132. Vogt, P. R. (1974). Volcano height and plate thickness. Earth and Planetary Science Letters, 23, 337–348.CrossRefGoogle Scholar
  133. Vogt, P. R. (1976). Plumes, subaxial pipe flow, and topography along the Mid-Oceanic Ridge. Earth and Planetary Science Letters, 29, 309–325.CrossRefGoogle Scholar
  134. Vogt, P. R. (1979). Global magmatic episodes: New evidence and implications for the steady-state mid-oceanic ridge. Geology, 7, 93–98.CrossRefGoogle Scholar
  135. Vogt, P. R. (1986a). The present plate boundary configuration. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 189–204).Google Scholar
  136. Vogt, P. R. (1986b). Magnetic anomalies and crustal magnetization. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 229–256).Google Scholar
  137. Vogt, P. R. (1986c). Plate kinematics during the last 20 m.y. and the problem of ‘present’ motions. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M., The Western North Atlantic Region, Geological Society of America (pp. 405–425).Google Scholar
  138. Vogt, P. R., & Tucholke B. E. (1986). Imaging the ocean floor: History and state of the art. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M., The Western North Atlantic Region, Geological Society of America (pp. 19–44).Google Scholar
  139. Vogt, P. R., & Jung, W.-Y. (2004). The Terceira rift as hyper-slow, hotspot-dominated oblique spreading axis: A comparison with other slow-spreading plate boundaries. Earth and Planetary Science Letters, 218, 77–90.CrossRefGoogle Scholar
  140. Vogt, P. R., & Jung W.-Y. (2005). Paired basement ridges: Spreading axis migration across mantle heterogeneities? In G. R. Foulger, G. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms, Geological Society of America Special Paper 388, 555–579.Google Scholar
  141. Vogt, P. R., Michael P. J., White S. M., & Macdonald K. C. (2008). Tall axial edifices (TAEs) on MOR spreading boundaries-characteristics and causes (Abs.), International Geologic Congress.Google Scholar
  142. Vogt, P. R., Kovacs, L. C., Bernero, L. C., & Srivastava, S. P. (1982). Asymmetric geophysical signatures in the Greenland-Norwegian and Southern Labrador Seas and the Eurasia Basin. Tectonophysics, 89, 95–160.CrossRefGoogle Scholar
  143. Vogt, P. R., & Ostenso, N. A. (1966). Magnetic survey over the Mid-Atlantic Ridge between 42° and 46° N. Journal of Geophysical Research, 71(18), 4389–4412.CrossRefGoogle Scholar
  144. Walker, J. D., Geissman J. W., Browning J. W., & Babcock L. E. (2012). Compilers, Geologic Time Scale v. 4.0, Geologic Society of America.Google Scholar
  145. Wegener, A. (1966). Die Enstehung der Kontinente und Ozeane, Vieweg und Sohn, Braunschweig, 1929 [The origin of continents and oceans, J. Biram, Trans.]. New York: Dover Publications (246p).Google Scholar
  146. Weiss, B. J., Huebscher, C., & Luedmann, T. (2015a). The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores). Tectonophysics, 654, 75–95.CrossRefGoogle Scholar
  147. Weiss, B. J., Huebscher, C., Luedmann, T., & Serra, N. (2016). Submarine sedimentation processes in the southeastern Terceira Rift/São Miguel region (Azores). Marine Geology, 374, 42–58.CrossRefGoogle Scholar
  148. Weiss, B. J., Huebscher, C., Wolf, D., & Luedmann, T. (2015b). Submarine explosive volcanism in the southeastern Terceira Rift/São Miguel region (Azores). Journal of Volcanology and Geothermal Research, 303, 79–91.CrossRefGoogle Scholar
  149. Wilson, J. T. (1963). A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41, 863–870.CrossRefGoogle Scholar
  150. Wilson, J. T. (1965). A new class of faults and their bearing on continental drift. Nature, 207, 343–347.CrossRefGoogle Scholar
  151. Yang, T., Shen, T., van der Lee, S., Solomon, S. C., & Hung, S.-H. (2006). Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth and Planetary Science Letters, 250, 11–26.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Marine Geosciences Division, Naval Research LaboratoryWashingtonUSA

Personalised recommendations