Advertisement

Approach Towards Robotic Mechanical Weed Regulation in Organic Farming

  • Andreas Michaels
  • Amos Albert
  • Matthias Baumann
  • Ulrich Weiss
  • Peter Biber
  • Arnd Kielhorn
  • Dieter Trautz
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

This paper deals with robotic mechanical weed regulation in organic farming, particularly for carrot cultivation. For that purpose the autonomous agriculture robot ‘BoniRob’ is utilized which is the result of a predecessor project and which allows an ‘App’-concept with changing sensor/actuators arrangements to cope with different use cases.The perception and navigation system is based on semantic localization. It enables adaptation to different environmental conditions encountered in typical tasks. The paper illustrates how this system will now be employed for the task of mechanical weed control. Additionally, the system architecture is described including means to increase robustness and preventing undesirable system conditions. In order to ensure a robust task fulfillment in weed control a shared autonomy approach is proposed which combines an efficient collaboration of the autonomous robot with human interaction via immersion technologies. Further, the paper sketches the ongoing development of the weed manipulator which needs to operate in harsh environments and which is faced with challenging requirements from speed and accuracy perspective. A parallel-kinematic structure enhanced by computer vision and visual servoing is proposed to cope with the requirements. Finally, the paper presents our first results regarding the selection of the actuator principle.

Keywords

Weed Control Mobile Platform Visual Servoing Weed Plant Semantic Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baumann, M.: Konzeption und realisierung einer antriebssteuerung für einen autonomen feldroboter. Leibniz Universität Hannover, Master’s thesis (2012)Google Scholar
  2. Berducat, M., Debain, C., Lenain, R., Cariou, C.: Evolution of agricultural machinery: the third way. In: Proceedings of International Conference JIAC2009, pp. 43–49 (2009)Google Scholar
  3. Blackmore, B.S.: A systems view of agricultural robots. In: 6th European Conference on, Precision Agriculture, pp. 23–31 (2007)Google Scholar
  4. Bleeker, P., Huiting, H., van der Weide, R.: New innovations for intra-row weed control. In: 9th EWRS Workshop on Physical and Cultural Weed, Control (2011)Google Scholar
  5. Connette, C., Parlitz, C., Hägle, M., Verl, A.: Singularity avoidance for over-actuated, pseudo-omnidirectional, wheeled mobile robots. ICRA (2009)Google Scholar
  6. Edan, Y., Han, S., Kondo, N.: Handbook of Automation. chapter Automation in agriculture, pp. 1095–1128. Springer Verlag, Berlin (2009)Google Scholar
  7. Legg, B.J., Stafford, J.V.: Precision agriculture-new technologies. In: Proceedings of The Brighton Conference-Pest and Diseases, pp. 1143–1150 (1998)Google Scholar
  8. Pitzer, B., Styer, M., Bersch, C., DuHadway, C.: Becker. J, Towards perceptual shared autonomy for robotic mobile manipulation, ICRA (2011)Google Scholar
  9. Ruckelshausen, A., Biber, P., Dorna, M., Gremmes, H., Klose, R., Linz, A., Rahe, F., Resch, R., Thiel, M., Weiss, D.U.: Bonirob an autonomous field robot platform for individual plant phenotyping. Joint International Agricultural Conference, Trautz, In (2009)Google Scholar
  10. Traslosheros, A., Sebastian, J.M., Pari, L.: High-speed visual servoing of PKMs. In, IEEE International Symposium on Industrial Electronics (ISIE) (2007)Google Scholar
  11. van der Weide, R.Y., Bleeker, P.O., Achten, V.T., Lotz, L.A., Fogelberg, F., Melander, B.: Innovation in mechanical weed control in crop rows. Weed Res. 48(3), 215–224 (2008)CrossRefGoogle Scholar
  12. Weiss U., Biber, P.: Plant detection and mapping for agricultural robots using a 3D-lidar sensor. In: 4th European Conference on Mobile Robots (EMCR) (2009)Google Scholar
  13. Weiss, U., Biber, P.: Semantic place classification and mapping for autonomous agricultural robots. Proceeding of IROS Workshop on Semantic Mapping and Autonomous, Knowledge Acquisition, In (2010)Google Scholar
  14. Weiss, U., Biber, P., Laible, S., Bohlmann, K., Zell, A.: Plant species classification using a 3D LIDAR sensor and machine learning. In: 9th International Conference on Machine Learning and Applications (2010)Google Scholar
  15. Willer, H., Kilcher, L.: The World of Organic Agriculture-Statistics and Emerging Trends 2012. Research Institute of Organic, Agriculture, In (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Michaels
    • 1
  • Amos Albert
    • 1
    • 2
  • Matthias Baumann
    • 2
  • Ulrich Weiss
    • 1
  • Peter Biber
    • 1
  • Arnd Kielhorn
    • 3
  • Dieter Trautz
    • 3
  1. 1.Robert Bosch GmbH, Corporate Sector Research and Advance EngineeringStuttgartGermany
  2. 2.Institut für Regelungstechnik, Leibniz Universität HannoverHannoverGermany
  3. 3.Fakultät Agrarwissenschaften and LandschaftsarchitekturHochschule OsnabrückOsnabrückGermany

Personalised recommendations