HANSE—A Low-Cost Autonomous Underwater Vehicle

  • Dariush Forouher
  • Jan Hartmann
  • Jan Helge Klüssendorff
  • Erik Maehle
  • Benjamin Meyer
  • Christoph Osterloh
  • Thomas Tosik
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

HANSE is a low-cost Autonomous Underwater Vehicle (AUV) capable of solving many common underwater challenges. In this paper we will present HANSE’s modular and expandable hardware and software design, the underwater simulator MARS, as well as robust and efficient sonar-based localization and vision-based object detection algorithms, with which we have successfully participated in the Student Autonomous Underwater Vehicle Challenge in Europe (SAUC-E) 2011.

Keywords

Object Detection Autonomous Underwater Vehicle Sonar Image Sonar Sensor Underwater Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aulinas, J., Carreras, M., Llado, X., Salvi, J., Garcia, R., Prados, R., Petillot, Y.: Feature extraction for underwater visual SLAM. IEEE OCEANS, In (2010)Google Scholar
  2. Aulinas, J., Petillot, Y., Llado, X., Salvi, J., Garcia, R.: Vision-based underwater SLAM for the SPARUS AUV. In: International Conference on Computer and IT Applications in the Maritime Industries (COMPIT), pp. 171–181 (2011)Google Scholar
  3. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognition 24(12), 1117–1138 (1991)CrossRefGoogle Scholar
  4. Boeing, A., Bräunl, T.: SubSim: An autonomous underwater vehicle simulation package. In: International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE), pp. 33–38. Springer, Berlin, (2006)Google Scholar
  5. Bohm, H.: Build Your Own Underwater Robot and Other Wet Projects. Westcoast Words, January (1997)Google Scholar
  6. Forouher, D., Hartmann, J., Litza, M., Maehle, E.: Sonar-based FastSLAM in an underwater environment using walls as features. In, International Conference on Advanced Robotics (ICAR) (2011)Google Scholar
  7. Maurelli, F., Cartwright, J., Johnson, N., Bossant, G., Garmier, P.-L., Regis, P., Sawas, J., Petillot, Y.: Nessie IV autonomous underwater vehicle. In, Unmanned Underwater Vehicles Showcase (UUVS) (2009)Google Scholar
  8. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  9. Ridao, P., Batlle, E., Ribas, D., Carreras, M.: NEPTUNE: A HIL simulator for multiple UUVs, pp. 524–531. In: IEEE, OCEANS (2004)Google Scholar
  10. Ribas, D., Ridao, P., Tardos, J.D., Neira, J.: Underwater SLAM in a marina environment. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1455–1460 (2007)Google Scholar
  11. Sattar, J., Dudek, G.: On the performance of color tracking algorithms for underwater robots under varying lighting and visibility. In, IEEE International Conference on Robotics and Automation (ICRA) (2006)Google Scholar
  12. Senarathne, P.G.C.N., Wijesoma, W.S., Lee, K.W., Kalyan, B., Moratuwage, M.D.P., Patrikalakis, N.M., Hover, F.S.: MarineSIM: Robot simulation for marine environments. IEEE, OCEANS, In (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dariush Forouher
    • 1
  • Jan Hartmann
    • 1
  • Jan Helge Klüssendorff
    • 1
  • Erik Maehle
    • 1
  • Benjamin Meyer
    • 1
  • Christoph Osterloh
    • 1
  • Thomas Tosik
    • 1
  1. 1.Institute of Computer Engineering, University of LübeckLübeckGermany

Personalised recommendations