Deterministic Function Computation with Chemical Reaction Networks

  • Ho-Lin Chen
  • David Doty
  • David Soloveichik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7433)

Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood.

CRNs have been shown to be efficiently Turing-universal when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates. We introduce the notion of function, rather than predicate, computation by representing the output of a function f:ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x1,…,xk molecules of some “input” species X1,…,Xk, the CRN is guaranteed to converge to having f(x1,…,xk) molecules of the “output” species Y1,…,Yl. We show that a function f: ℕk → ℕl is deterministically computed by a CRN if and only if its graph { (x,y) \(\in{\mathbb N}^k \times{\mathbb N}^l\ |\) f(x) = y } is a semilinear set.

Finally, we show that each semilinear function f can be computed on input x in expected time \(O(\mathrm{polylog}\ \|{\rm x}\|_1)\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast Computation by Population Protocols with a Leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC, pp. 292–299 (2006)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefGoogle Scholar
  4. 4.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science 93, 98–117 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Cardelli, L.: Strand algebras for DNA computing. Natural Computing 10(1), 407–428 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less Haste, Less Waste: On Recycling and Its Limits in Strand Displacement Systems. Journal of the Royal Society Interface (to appear, 2012); In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 84–99. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  8. 8.
    Jiang, H., Riedel, M., Parhi, K.: Digital signal processing with molecular reactions. IEEE Design and Test of Computers (to appear, 2012)Google Scholar
  9. 9.
    Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)CrossRefGoogle Scholar
  10. 10.
    Presburger, M.: Ub̈er die vollständigkeit eines gewissen systems der arithmetik ganzer zahlen. In: Welchem die Addition als einzige Operation hervortritt. Compte Rendus du I, Warsaw. Congrks des Mathematiciens des pays Slavs, pp. 92–101 (1930)Google Scholar
  11. 11.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393 (2010)CrossRefGoogle Scholar
  13. 13.
    Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ho-Lin Chen
    • 1
  • David Doty
    • 2
  • David Soloveichik
    • 3
  1. 1.National Taiwan UniversityTaipeiTaiwan
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.University of CaliforniaSan FranciscoUSA

Personalised recommendations