Snake Table: A Dynamic Pivot Table for Streams of k-NN Searches

  • Juan Manuel Barrios
  • Benjamin Bustos
  • Tomáš Skopal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7404)


We present the Snake Table, an index structure designed for supporting streams of k-NN searches within a content-based similarity search framework. The index is created and updated in the online phase while resolving the queries, thus it does not need a preprocessing step. This index is intended to be used when the stream of query objects fits a snake distribution, that is, when the distance between two consecutive query objects is small. In particular, this kind of distribution is present in content-based video retrieval systems, when the set of query objects are consecutive frames from a query video. We show that the Snake Table improves the efficiency of k-NN searches in these systems, avoiding the building of a static index in the offline phase.


Similarity Search Metric Indexing Multimedia Information Retrieval Content-Based Video Retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrios, J.M., Bustos, B.: Competitive content-based video copy detection using global descriptors. Multimedia Tools and Applications, 1–36 (2011)Google Scholar
  2. 2.
    Bustos, B., Pedreira, O., Brisaboa, N.: A dynamic pivot selection technique for similarity search. In: Proc. of the Int. Workshop on Similarity Search and Applications (SISAP 2008), pp. 105–112. IEEE (2008)Google Scholar
  3. 3.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  4. 4.
    Kim, C., Vasudev, B.: Spatiotemporal sequence matching for efficient video copy detection. IEEE Transactions on Circuits and Systems for Video Technology 15(1), 127–132 (2005)CrossRefGoogle Scholar
  5. 5.
    Law-To, J., Joly, A., Boujemaa, N.: MUSCLE-VCD-2007: a live benchmark for video copy detection (2007),
  6. 6.
    Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 703–715 (2001)CrossRefGoogle Scholar
  7. 7.
    Micó, L., Oncina, J.: A constant average time algorithm to allow insertions in the LAESA fast nearest neighbour search index. In: Proc. of the Int. Conf. on Pattern Recognition (ICPR 2010), pp. 3911–3914. IEEE (2010)Google Scholar
  8. 8.
    Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition Letters 15(1), 9–17 (1994)CrossRefGoogle Scholar
  9. 9.
    Skopal, T., Lokoč, J., Bustos, B.: D-cache: Universal distance cache for metric access methods. IEEE Transactions on Knowledge and Data Engineering 24(5), 868–881 (2012)CrossRefGoogle Scholar
  10. 10.
    Vidal, E.: New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (AESA). Pattern Recognition Letters 15(1), 1–7 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach (Advances in Database Systems). Springer (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Manuel Barrios
    • 1
  • Benjamin Bustos
    • 1
  • Tomáš Skopal
    • 2
  1. 1.KDW+PRISMA, Department of Computer ScienceUniversity of ChileChile
  2. 2.SIRET Research Group, Faculty of Mathematics and PhysicsCharles University in PragueCzech Republic

Personalised recommendations