Advertisement

Selective Graph Coloring in Some Special Classes of Graphs

  • Marc Demange
  • Jérôme Monnot
  • Petrica Pop
  • Bernard Ries
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)

Abstract

In this paper, we consider the selective graph coloring problem. Given an integer k ≥ 1 and a graph G = (V,E) with a partition V 1,…,V p of V, it consists in deciding whether there exists a set V * in G such that |V * ∩ V i | = 1 for all i ∈ {1,…,p}, and such that the graph induced by V * is k-colorable. We investigate the complexity status of this problem in various classes of graphs.

Keywords

computational complexity scheduling bipartite graphs split graphs complete q-partite graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)Google Scholar
  2. 2.
    Al-Mouhamed, M., Dandashi, A.: Graph Coloring for class scheduling. In: IEEE/ACS Internation Conference on Computer Systems and Applications (AICCSA), pp. 1–4 (2010)Google Scholar
  3. 3.
    Berge, C.: Graphes et hypergraphes. Dunod, Paris (1970)zbMATHGoogle Scholar
  4. 4.
    Chung, Y., Demange, M.: On inverse chromatic number problems. Electronic Notes in Discrete Mathematics 36, 1129–1136 (2010)CrossRefGoogle Scholar
  5. 5.
    Berman, P., Karpinski, M., Scott, A.D.: Approximation Hardness of Short Symmetric Instances of MAX-3SAT. Electronic Colloquium on Computational Complexity. Technical Report TR03-049 (2003)Google Scholar
  6. 6.
    Chvatál, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E., Seymour, P.D., Papadimitriou, C.H., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Computing 23, 864–894 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dolgui, A., Sotskov, Y.N., Werner, F.: Mixed graph coloring via unit-time job-shop. Internat. J. Math. Algorithms 2, 289–323 (2001)zbMATHGoogle Scholar
  9. 9.
    Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fellows, M., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parametrized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. European Journal of Operations Research 148, 1–13 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gamache, M., Hertz, A., Ouellet, J.: A graph coloring model for a feasibility problem in crew scheduling. Computers and Operations Research 34, 2384–2395 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory of \(\mathcal{NP}\)-completeness. Freeman, New York (1979)Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified \(\mathcal{NP}\)-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974)Google Scholar
  15. 15.
    Giaro, K., Kubale, M., Obszarski, P.: A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discrete Applied Mathematics 157(17), 3625–3630 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Korte, B., Vygen, J.: Combinatorial Optimization, Theory and Algorithms, 4th edn. Springer (2008)Google Scholar
  17. 17.
    McGrae, A.R.A., Zito, M.: Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 179–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Ries, B.: Complexity of two coloring problems in cubic planar bipartite mixed graphs. Discrete Applied Mathematics 158, 592–596 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related problems. Computational Complexity 14, 281–307 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sotskov, Y.N., Tanaev, V.S., Werner, F.: Scheduling problems and mixed graph colorings. Optimization 51, 597–624 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Tovey, C.A.: A simplified \(\mathcal{NP}\)-complete satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Demange
    • 1
  • Jérôme Monnot
    • 2
  • Petrica Pop
    • 3
  • Bernard Ries
    • 2
  1. 1.ESSEC Business SchoolParisFrance
  2. 2.LAMSADEUniversité Paris-DauphineFrance
  3. 3.Universitatea de NordBaia MareRomania

Personalised recommendations