Minimum Ratio Cover of Matrix Columns by Extreme Rays of Its Induced Cone

  • A. S. Freire
  • V. Acuña
  • P. Crescenzi
  • C. E. Ferreira
  • V. Lacroix
  • P. V. Milreu
  • E. Moreno
  • M. -F. Sagot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)

Abstract

Given a matrix S ∈ ℝm ×n and a subset of columns R, we study the problem of finding a cover of R with extreme rays of the cone \(\mathcal{F}=\{v \in \mathbb{R}^n \mid Sv=\mathbf{0}, v\geq \mathbf{0}\}\), where an extreme ray v covers a column k if vk > 0. In order to measure how proportional a cover is, we introduce two different minimization problems, namely the minimum global ratio cover (MGRC) and the minimum local ratio cover (MLRC) problems. In both cases, we apply the notion of the ratio of a vector v, which is given by \(\frac{\max_i v_i}{\min_{j\mid v_j > 0} v_j}\). We show that these two problems are NP-hard, even in the case in which |R| = 1. We introduce a mixed integer programming formulation for the MGRC problem, which is solvable in polynomial time if all columns should be covered, and introduce a branch-and-cut algorithm for the MLRC problem. Finally, we present computational experiments on data obtained from real metabolic networks. .

Keywords

Extreme rays elementary modes metabolic networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acuña, V., Chierichetti, F., Lacroix, V., Marchetti-Spaccamela, A., Sagot, M.-F., Stougie, L.: Modes and cuts in metabolic networks: Complexity and algorithms. Biosystems 95(1), 51–60 (2009)CrossRefGoogle Scholar
  2. 2.
    Cottret, L., Wildridge, D., Vinson, F., Barrett, M.P., Charles, H., Sagot, M.-F., Jourdan, F.: MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Research 38(suppl. 2), W132–W137 (2010)CrossRefGoogle Scholar
  3. 3.
    Fukuda, K., Prodon, A.: Double Description Method Revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  5. 5.
    Heiner, M., Koch, I.: Petri Net Based Model Validation in Systems Biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Jungers, R.M., Zamorano, F., Blondel, V.D., Wouwer, A.V., Bastin, G.: Fast computation of minimal elementary decompositions of metabolic flux vectors. Automatica - Special Issue on Systems Biology 47(6), 1255–1259 (2011)MATHGoogle Scholar
  7. 7.
    Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic networks. Molecular Biology Reports 29, 233–236 (2002)CrossRefGoogle Scholar
  8. 8.
    Nemirovski, A., Rothblum, U.: On complexity of matrix scaling. Linear Algebra and its Applications 302-303, 435–460 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rote, G., Zachariasen, M.: Matrix scaling by network flow. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 848–854 (2007)Google Scholar
  10. 10.
    Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)CrossRefGoogle Scholar
  11. 11.
    Wolsey, L.A.: Integer programming. Wiley Interscience, New York (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. S. Freire
    • 1
    • 2
  • V. Acuña
    • 2
    • 5
  • P. Crescenzi
    • 3
  • C. E. Ferreira
    • 1
  • V. Lacroix
    • 2
  • P. V. Milreu
    • 2
  • E. Moreno
    • 4
  • M. -F. Sagot
    • 2
  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloBrazil
  2. 2.INRIA and Université de Lyon ; Université Lyon 1 ; CNRS, UMR5558France
  3. 3.Università degli Studi di FirenzeItaly
  4. 4.Faculty of Science and TechnologyUniversidad Adolfo IbañezChile
  5. 5.Mathomics, Center for Genome RegulationUniversity of ChileSantiagoChile

Personalised recommendations