EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data

  • Richard Shako
  • Christoph Förste
  • Oleh Abrikosov
  • Sean Bruinsma
  • Jean-Charles Marty
  • Jean-Michel Lemoine
  • Frank Flechtner
  • Hans Neumayer
  • Christoph Dahle
Chapter

Abstract

GOCE satellite gradiometry data were combined with data from the satellite missions GRACE and LAGEOS and with surface gravity data. The resulting high-resolution model, EIGEN-6C, reproduces mean seasonal variations and drifts to spherical harmonic degree and order (d/o) 50 whereas the mean spherical harmonic coefficients are estimated to d/o 1420. The model is based on satellite data up to d/o 240, and determined with surface data only above degree 160. The new GOCE data allowed the combination with surface data at a much higher degree (160) than was formerly done (70 or less), thereby avoiding the propagation of errors in the surface data over South America and the Himalayas in particular into the model.

References

  1. Andersen OB, Knudsen P, Berry P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114(c11001):12. doi:10.1029/2008JC005179 Google Scholar
  2. Andersen OB (2010) The DTU10 Gravity field and Mean sea surface (2010), Second international symposium of the gravity field of the Earth (IGFS2). Fairbanks, AlaskaGoogle Scholar
  3. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O, Neumayer H (2010a) GOCE Gravity Field Recovery by Means of the Direct Numerical Method, presented at the ESA living planet symposium, 27th June–2nd July 2010, Bergen, Norway. See also: earth.esa.int/GOCEGoogle Scholar
  4. Bruinsma SL, Lemoine JM, Biancale R, Vales N (2010b) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601. doi:10.1016/j.asr.2009.10.012 CrossRefGoogle Scholar
  5. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008a) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geodesy 82:331–346. doi:10.1007/s00190-007-0183-8 CrossRefGoogle Scholar
  6. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma S, Koenig R and Meyer U (2008b) EIGEN-GL05C—A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstr 10:EGU2008-A-03426Google Scholar
  7. Goiginger H, Hoeck E, Rieser D et al (2011) The combined satellite-only global gravity field model GOCO02S. Geophys Res Abstr 13: EGU2011-10571Google Scholar
  8. Ihde J, Adam J, Gurtner W, Harsson BG, Sacher M, Schlüter W, Wöppelmann G (2002) The height solution of the European Vertical Reference Network (EUVN). Mitteilungen des BKG, Bd. 25, EUREF Publication No. 11/I, Frankfurt a. M., pp 53–79Google Scholar
  9. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
  10. Lemoine FG, Kenyon SC, Factor JK et al (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, GreenbeltGoogle Scholar
  11. Metzler B, Pail R (2005) GOCE data processing: The spherical cap regularization approach. Stud Geophys Geod 49:441–462. doi:10.1007/s11200-005-0021-5 Google Scholar
  12. Milbert DG (1998) Documentation for the GPS Benchmark Data Set of 23-July-1998. IGeS Int Geoid Ser Bull 8:29–42Google Scholar
  13. Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906 CrossRefGoogle Scholar
  14. Pail R, Bruinsma S, Migliaccio F, Förste C et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843. doi:10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  15. Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st international symposium of the international gravity field service “Gravity field of the Earth” (Istanbul 2006), Harita Dergisi, year 73, special issue 18, pp 318–323, General Command of Mapping, Ankara/Turkey, ISSN 1300–5790Google Scholar
  16. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916
  17. Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71:282–289CrossRefGoogle Scholar
  18. Ries JC, Bettadpur S, Poole S, Richter T (2011) Mean background gravity fields for GRACE processing, GRACE science team meeting, Austin, TX, 8–10 August 2011Google Scholar
  19. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans AGU 88(52), Fall Meet. Suppl., Abstract G42A–03Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Richard Shako
    • 1
  • Christoph Förste
    • 1
  • Oleh Abrikosov
    • 1
  • Sean Bruinsma
    • 2
  • Jean-Charles Marty
    • 2
  • Jean-Michel Lemoine
    • 2
  • Frank Flechtner
    • 1
  • Hans Neumayer
    • 1
  • Christoph Dahle
    • 1
  1. 1.GFZ German Research Centre for GeosciencesDept 1 “Geodesy and Remote Sensing”PotsdamGermany
  2. 2.Groupe de Recherche de Géodésie Spatiale (GRGS)ToulouseFrance

Personalised recommendations