Numerical Study on Separation of Analytes through Isotachophoresis

  • S. Bhattacharyya
  • Partha P. Gopmandal
Part of the Communications in Computer and Information Science book series (CCIS, volume 305)

Abstract

In this paper we present a high resolution numerical algorithm to capture the sharp interfaces in isotachophoretic transport of ions. We have considered a two-dimensional model of isotachophoresis (ITP). Both peak and plateau mode of separation is investigated in the present analysis. Our numerical algorithm is based on a finite volume method along with a second-order upwind scheme, QUICK. We have also presented an analytic solution for one-dimensional transport of two electrolytes where diffusion current is neglected. The formation of steady-state in a reference frame co-moving with ITP zones is analysed by providing the transient phase of the ITP separation. Results show that our numerical method can efficiently capture the sharp boundaries between adjacent anlaytes in a steady-state. The present numerical algorithm can handle dispersion of ITP due to pressure-driven convection of electroosmosis of ions.

Keywords

Sharp Interface Mobility Ratio Plateau Mode Charge Conservation Equation Lead Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia-Schwartz, G., Bercovicci, M., Marshal, L.A., Santiago, J.G.: J. Fluid Mech. 679, 455–475 (2011)CrossRefGoogle Scholar
  2. 2.
    Gebauer, P., Mala, Z., Bocek, P.: Electrophoresis 32, 83–89 (2011)CrossRefGoogle Scholar
  3. 3.
    Kohlrausch, F.: Ann. Physik 62, 209–239 (1897)MATHCrossRefGoogle Scholar
  4. 4.
    Bercovicci, M., Lelea, S.K., Santiago, J.G.: Journal of Chromatography A 1217, 588–599 (2010)CrossRefGoogle Scholar
  5. 5.
    Hruska, V., Jaros, M., Gas, B.: Electrophoresis 27, 984–991 (2006)CrossRefGoogle Scholar
  6. 6.
    Yu, J.W., Chou, Y., Yang, R.J.: Electrophoresis 29, 1048–1057 (2008)CrossRefGoogle Scholar
  7. 7.
    Chou, Y., Yang, R.J.: Journal of Chromatography A 1217, 394–404 (2010)CrossRefGoogle Scholar
  8. 8.
    Bercovicia, M., Lelea, S.K., Santiago, J.G.: Journal of Chromatography A 1216, 1008–1018 (2009)CrossRefGoogle Scholar
  9. 9.
    Thormann, W., Breadmore, M.C., Caslavska, J., Mosher, R.A.: Dynamic Computer Simulations of Electrophoresis: A versatile Research and Teaching Tool. Electrophoresis 31, 726–754 (2010)CrossRefGoogle Scholar
  10. 10.
    Shim, J., Dutta, P., Ivory, C.F.: Numerical Heat Transfer. Part A: Applications 52, 441–461 (2007)CrossRefGoogle Scholar
  11. 11.
    Choi, H., Jeon, Y., Cho, M., Lee, D., Shim, J.: Microsyst. Technol. 16, 1931–1938 (2010)CrossRefGoogle Scholar
  12. 12.
    Leonard, B.P.: Comput. Meth. Appl. Mech. Eng 19, 59–98 (1979)MATHCrossRefGoogle Scholar
  13. 13.
    Fletcher, C.A.J.: Computation Technique for Fluid Dynamics, vol. 2. Springer, Berlin (1998)Google Scholar
  14. 14.
    Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)Google Scholar
  15. 15.
    Goet, G., Baier, T., Hardt, S.: Biomicrofluidics 5, 014109(1-16) (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Bhattacharyya
    • 1
  • Partha P. Gopmandal
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations