A Fast Image Reconstruction Algorithm Using Adaptive R-Tree Segmentation and B-Splines

  • Ravikant Verma
  • Rajesh Siddavatam
Part of the Communications in Computer and Information Science book series (CCIS, volume 305)

Abstract

The image reconstruction using adaptive R tree based segmentation and linear B- splines is addressed in this paper. We used our own significant pixel selection method to use a combination of canny and sobel edge detection techniques and then store the edges in an adaptive R tree to enhance and improve image reconstruction. The image set can be encapsulated in a bounding box which contains the connected parts of the edges found using edge-detection techniques. Image reconstruction is done based on the approximation of image regarded as a function, by B-spline over adapted Delaunay triangulation. The proposed method is compared with some of the existing image reconstruction spline models.

Keywords

Image Segmentation Delaunay triangulation B-splines Image Reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siddavatam, R., Verma, R., Srivastava, G.K., Mahrishi, R.: A Fast Image Reconstruction Algorithm Using Significant Sample Point Selection and Linear Bivariate Splines. In: IEEE TENCON, pp. 1–6. IEEE Press, Singapore (2009)Google Scholar
  2. 2.
    Siddavatam, R., Verma, R., Srivastava, G.K., Mahrishi, R.: A Novel Wavelet Edge Detection Algorithm For Noisy Images. In: IEEE International Conference on Ultra Modern Technologies, pp. 1–8. IEEE Press, St. Petersburg (2009)Google Scholar
  3. 3.
    Siddavatam, R., Verma, R., Srivastava, G.K., Mahrishi, R.: A Novel Image Reconstruction Using Second Generation Wavelets. In: IEEE International Conference on Advances in Recent Technologies in Communication and Computing, pp. 509–513. IEEE Press, Kerala (2009)Google Scholar
  4. 4.
    Siddavatam, R., Sandeep, K., Mittal, R.K.: A Fast Progressive Image Sampling Using Lifting Scheme And Non-Uniform B-Splines. In: IEEE International Symposium on Industrial Electronics, pp. 1645–1650. IEEE Press, Spain (2007)Google Scholar
  5. 5.
    Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The Farthest Point Strategy For Progressive Image Sampling. IEEE Trans. Image Processing 6(9), 1305–1315 (1997)CrossRefGoogle Scholar
  6. 6.
    Arigovindan, M., Suhling, M., Hunziker, P., Unser, M.: Variational Image Reconstruction From Arbitrarily Spaced Samples: A Fast Multiresolution Spline Solution. IEEE Trans. on Image Processing 14(4), 450–460 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Vazquez, C., Dubois, E., Konrad, J.: Reconstruction of Nonuniformly Sampled Images in Spline Spaces. IEEE Trans. on Image Processing 14(6), 713–724 (2005)CrossRefGoogle Scholar
  8. 8.
    Cohen, A., Mate, B.: Compact Representation Of Images By Edge Adapted Multiscale Transforms. In: IEEE International Conference on Image Processing, Tessaloniki, pp. 8–11 (2001)Google Scholar
  9. 9.
    Laurent, D., Nira, D., Armin, I.: Image Compression by Linear Splines over Adaptive Triangulations. Signal Processing 86(4), 1604–1616 (2006)MATHGoogle Scholar
  10. 10.
    Tzu-Chuen, L., Chin-Chen, C.: A Progressive Image Transmission Technique Using Haar Wavelet Transformation. International Journal of Innovative Computing, Information and Control 3, 6(A), 1449–1461 (2007)Google Scholar
  11. 11.
    Eldar, Y., Oppenheim, A.: Filter Bank Reconstruction of Bandlimited Signals from Non-Uniform and Generalized Samples. IEEE Trans. Signal Processing 48(10), 2864–2875 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Aldroubi, A., Grochenig, K.: Nonuniform Sampling and Reconstruction in Shift Invariant Spaces. SIAM Rev. 43, 585–620 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Wu, J., Amaratunga, K.: Wavelet Triangulated Irregular Networks. Int. J. Geographical Information Science 17(3), 273–289 (2003)CrossRefGoogle Scholar
  14. 14.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull Algorithm for Convex Hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ravikant Verma
    • 1
  • Rajesh Siddavatam
    • 1
  1. 1.Department of Computer Science & ITJaypee University of Information TechnologyWaknaghatIndia

Personalised recommendations