Skin Capacitance

Chapter

Abstract

The aim of this chapter is to describe the commercial electrical capacitance method for measuring skin hydration, the Corneometer 825 with the new digital probe, in comparison with the older analog system. In vitro calibration and validation experiments were considered on cellulose and filter pads using different solvents in order to estimate the influence of electrolytes and the evaluation of water desorption kinetics. Measurements over different layers of low dielectric plastic foils were used in order to estimate the detection depth of the hydration measurements.

In vivo measurements were considered on various skin sites covering a large range of hydration status going from very dry to well-hydrated skin areas. The intraperson variability was lower for the digital probe (7.2 %) compared with the analog probe (8.7 %). Sensitivity of the capacitance method was very good at low and very low hydration levels while sensitivity decreases at very high levels of hydration. The influence of external factors such as pressure of application and environmental factors (temperature, relative humidity) and seasonal variation is discussed.

Keywords

Stratum Corneum Skin Surface Capacitance Measurement Analog Probe Capacitance Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Mr. Gabriel Khazaka and Mrs. Diana Khazaka, Courage-Khazaka Electronic Köln, for technical information concerning the Corneometer CM 825 and MPA.

References

  1. 1.
    Blank IH (1952) Factors which influence the water content of the S.C. J Invest Dermatol 18:433–440PubMedGoogle Scholar
  2. 2.
    Schwan HP (1957) Dielectric properties of living tissues. Adv Biol Med Phys V:147–163Google Scholar
  3. 3.
    Tagami H, Oki M, Iwatsuki K, Kanamura Y, Yamada M, Ichijo B (1980) Evaluation of skin surface hydration in vivo by electrical measurement. J Invest Dermatol 75:500–507PubMedCrossRefGoogle Scholar
  4. 4.
    Tagami H, Kanamaru Y, Inoue K et al (1982) Water sorption–desorption test of the skin in vivo for functional assessment of the stratum corneum. J Invest Dermatol 78:425–428PubMedCrossRefGoogle Scholar
  5. 5.
    Lévêque JL, de Rigal J (1983) Impedance methods for studying skin moisturization. J Soc Cosmet Chem 34:419–428Google Scholar
  6. 6.
    Dikstein S, Bercovici PG (1985) Measurement of skin surface capacitance at 16 Hz and at other frequencies. Bioeng Skin 1:357Google Scholar
  7. 7.
    Moseley H, English JS, Coghill GM, Mackie RM (1985) Assessment and use of a new skin hygrometer. Bioeng Skin 1:177–192Google Scholar
  8. 8.
    Salter DC (1987) Instrumental methods for assessing skin moisturization. Cosmet Toilet 102:103–109Google Scholar
  9. 9.
    Lévêque JL, Grove G, de Rigal J, Corcuff P, Kligman AM, Saint Léger D (1987) Biophysical characterization of dry facial skin. J Soc Cosmet Chem 82:171–177Google Scholar
  10. 10.
    Tagami H (1988) Impedance measurements. In: Lévêque JL (ed) Cutaneous investigation in health and disease. Marcel Dekker, New York, pp 79–111Google Scholar
  11. 11.
    Blichman CW, Serup J (1988) Assessment of skin moisture. Acta Dermatol Venereol (Stockholm) 68:284–290Google Scholar
  12. 12.
    Barel AO, Clarys P, Wessels B, de Romsée A (1991) Non invasive electrical measurement for evaluating the water content of the horny layer: comparison between the capacitance and the conductance measurements. In: Scott RC, Guy RH, Hadgraft J, Bodde HE (eds) Prediction of percutaneous penetration – methods, measurements, modelling. IBC Technical Services, London, pp 238–247Google Scholar
  13. 13.
    Van Neste D (1991) Comparative study of normal and rough human skin hydration in vivo: evaluation with four different instruments. J Dermatol Sci 2:119–124PubMedCrossRefGoogle Scholar
  14. 14.
    Gabard B (1994) Testing the efficacy of moisturizers. In: Elsner P, Berardesca E, Maibach HI (eds) Bioengineering of the skin: water and the stratum corneum. CRC Press, Boca Raton, pp 147–170Google Scholar
  15. 15.
    Salter DC (1994) Further hardware and measurement approaches for studying water in the stratum corneum. In: Elsner P, Berardesca E, Maibach HI (eds) Bioengineering of the skin: water and the stratum corneum. CRC Press, Boca Raton, pp 205–215Google Scholar
  16. 16.
    Loden M (1995) Biophysical methods of providing objective documentation of the effects of moisturizing creams. Skin Res Technol 1:101–108CrossRefGoogle Scholar
  17. 17.
    Tagami H (1995) Measurements of electrical conductance and impedance. In: Serup J (ed) Handbook of non-invasive methods and the skin. CRC Press, London, pp 159–164Google Scholar
  18. 18.
    Barel AO, Clarys P (1995) Measurement of epidermal capacitance. In: Serup J (ed) Handbook of non-invasive methods and the skin. CRC Press, London, pp 165–170Google Scholar
  19. 19.
    Courage W (1995) Hardware and measuring principle. In: Elsner P, Berardesca E, Maibach HI (eds) Bioengineering and the skin: water and stratum corneum. CRC Press, Boca Raton, pp 171–175Google Scholar
  20. 20.
    Moss J (1996) The effect of 3 moisturizers on skin surface hydration. Electrical conductance (Skicon 200), capacitance (Corneometer CM420) and transepidermal water loss (TEWL). Skin Res Technol 2:32CrossRefGoogle Scholar
  21. 21.
    Piérard GE (1997) Charactérisation des peaux sèches, la biométrologie complète la clinique. Cosmétologie 14:48–51Google Scholar
  22. 22.
    Clarys P, Barel AO, Gabard B (1999) Non-invasive electrical measurements for the evaluation of the hydration state of the skin: comparison between three commercial instruments: the Corneometer, the Skicon and the Nova DPM. Skin Res Technol 5:14–20CrossRefGoogle Scholar
  23. 23.
    Barel AO, Clarys P, Gabard B (1999) In vivo evaluation of the hydration state of the skin: measurements and methods for claim support. In: Elsner P, Merk HF, Maibach HI (eds) Cosmetics: controlled efficacy studies and regulation. Springer, Berlin, pp 57–80Google Scholar
  24. 24.
    Bernengo JC, de Rigal J (2000) Techniques physiques de mesure de l’hydratation du stratum corneum in vivo. In: Agache P (ed) Physiologie de la peau et explorations fonctionnelles cutanées. Editions Médicales Internationales, Cachan, pp 117–162Google Scholar
  25. 25.
    Lee CM, Maibach HI (2002) Bioengineering analysis of water hydration: an overview. Exog Dermatol 1:269–275CrossRefGoogle Scholar
  26. 26.
    Barel AO (2002) Product testing: moisturizers. In: Elsner P, Berardesca E, Wilhelm KP, Maibach HI (eds) Bioengineering of the skin: skin biomechanics. CRC Press, Boca Raton, p 241Google Scholar
  27. 27.
    Tagami H (2006) Epidermal hydration: measurement of high frequency electrical conductance. In: Serup J, Jemec GB, Grove GL (eds) Handbook of non-invasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 329–336CrossRefGoogle Scholar
  28. 28.
    Clarys P, Barel AO (1995) Quantitative evaluation of skin surface lipids. Clin Dermatol 13:307–3021PubMedCrossRefGoogle Scholar
  29. 29.
    Clarys P, Barel AO, Gabard B (2011) Fonction sébacée et métrologie de l’excrétion sébacée. In: Revuz J (ed) Cosmétologie et Dermatologie Esthétique. Elsevier Masson, Paris, pp 1–8Google Scholar
  30. 30.
    Barel AO, Clarys P (2006) Measurement of epidermal capacitance. In: Serup J, Jemec GB, Grove GL (eds) Handbook of non-invasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 337–344CrossRefGoogle Scholar
  31. 31.
    Gabard B, Clarys P, Barel AO (2006) Comparison of commercial electrical measurement instruments for assessing the hydration state of the stratum corneum. In: Serup J, Jemec GB, Grove GL (eds) Handbook of non-invasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 351–358CrossRefGoogle Scholar
  32. 32.
    Khazaka G (2008) Improvement of digital sensor technology of the Corneometer CM 825 probe. Available from http://www.courage-khazaka.de/index.php/en/all-downloads/downloads-en/file/6-brochcm825sm815e
  33. 33.
    Khazaka D (2008) Nominal pressure of application of the analogic and digital hydration measuring probe of the Corneometer CM 825 and MPA. Available from http://www.courage-khazaka.de/index.php/en/all-downloads/downloads-en/file/28-brochmpae
  34. 34.
    Khazaka G (2008) Technical information of the Courage-Khazaka calibration filter pad and the in vitro calibration of the Corneometer CM 825 (analogic and digital probes). Available from http://www.courage-khazaka.de/index.php/en/faq-en/faq-scientific-devices/60-general-questions-on-the-scientific-measurements#faqsc1
  35. 35.
    Barel AB, Clarys P (1997) In vitro calibration of the capacitance method (Corneometer CM 825)- and conductance method (Skicon 200) for the evaluation of the hydration state of the skin. Skin Res Technol 3:107–133CrossRefGoogle Scholar
  36. 36.
    Clarys P, Clijsen R, Taeymans J, Barel AO (2012) Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer 8525) and the impedance method (Skicon 200EX). Skin Res Technol 18(3):316–323Google Scholar
  37. 37.
    Courage-Khazaka technical information of the Corneometer Cm 825 (2008) Available from http://www.courage-khazaka.de/index.php/en/faq-en/faq-scientific-devices/61-corneometer
  38. 38.
    Fluhr JW, Gloor M, Lazzerinin SL, Kleesz ZP, Grieshaber R, Berardesca E (1999) Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003 and Dermalab). Part I. In vitro. Part II. In vivo. Skin Res Technol 5:156–178Google Scholar
  39. 39.
    Bielfeldt S, Brandt M, Gerstenkorn A, Wilhelm KP (2010) Capacitance measurement of skin moisture: sophisticated calibration of instruments. Available from http://www.courage-khazaka.de/index.php/de/alle-downloads/downloads-de/file/221-litcm-multicenter
  40. 40.
    Heinrich U, Koop U, Leveneu-Duchemin MC, Osterrieder K, Bielfeldt S, Charcaut C et al (2003) Members of the DGK task Force « Skin Hydration », multicenter comparison of skin hydration in terms of physical, physiological and product dependant parameters by the capacitive method (Corneometer CM 825). J Cosmet Sci 25:31–53CrossRefGoogle Scholar
  41. 41.
    André T, De Wan M, Lefèvre P, Thonnard JL (2008) Moisture Evaluator: a direct measure of fingertip skin hydration during object manipulation. Skin Res Technol 14:385–389PubMedCrossRefGoogle Scholar
  42. 42.
    Clarys P, Clijsen R, Barel AO (2011) Influence of probe application on in vitro and in vivo capacitance (Corneometer CM 825) and conductance (Skicon 200 EX) measurements. Skin Res Technol 17:445–450PubMedCrossRefGoogle Scholar
  43. 43.
    Wilhelm KP (1989) Possible pitfalls in hydration measurements. In: Elsner P, Barel AO, Berardesca E, Gabard B, Serup J (eds) Skin bioengineering: techniques and applications in dermatology and cosmetology. Karger, Basel, pp 223–234Google Scholar
  44. 44.
    Rogiers V, Derde MP, Verleye G, Roseeuw D (1990) Standardized conditions needed for skin surface hydration measurements. Cosmet Toilet 105:73–82Google Scholar
  45. 45.
    Berardesca E, European Group for Efficacy Measurements on Cosmetics and Other Topical Products (EEMCO) (1997) EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol 3:126–132CrossRefGoogle Scholar
  46. 46.
    O’ Goshi KI, Serup J (2005) Inter-instrumental variation of skin capacitance measured with the Corneometer. Skin Res Technol 11:107–109CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratory of Human Biometry and Biomechanics, Faculty of Physical Education and PhysiotherapyFree University of Brussels (VUB)BrusselsBelgium

Personalised recommendations