Application of non-orthogonal bases in the theory of light scattering by spheroidal particles

Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The theory of light scattering by single particles and their ensembles has important applications in various areas of science and technology, e.g. in optics of the atmosphere, radio physics, astrophysics and biophysics as well as in environmental monitoring, analysis of the Earth’s climate changes and so on. So far in such applications one used to employ the Mie theory that provides the solution to the light scattering problem for a sphere (van de Hulst, 1957; Bohren and Huffman, 1983). In this solution the fields are represented by their expansions in terms of vector spherical wave functions that form an orthogonal basis for the problem including the boundary conditions on the spherical particle surface. As a result the Mie solution is rather simple and allows one to extensively apply numerical modelling due to the ease of calculations of the spherical wave functions in a very wide range of parameter values.

Keywords

Scattered Radiation Transverse Magnetic Oblate Spheroid Prolate Spheroid Spheroidal Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrejewski, W., 1953: Die Beugung electromagnetischerWellen an der leitenden Kreissscheibe und an der kreisformigen Offnung im leitenden ebenen Schirm, Z. angew. Phys., 5, 178–186.Google Scholar
  2. Asano, S., and G. Yamamoto, 1975: Light scattering by spheroidal particle, Appl. Opt., 14, 29–49.Google Scholar
  3. Barber, P. W., and S. C. Hill, 1990: Light Scattering by Particles: Computational Methods, Singapore: World Scientific.Google Scholar
  4. Barber, P. W., and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Appl. Opt., 14, 2864–2872.CrossRefGoogle Scholar
  5. Bohren, C., and D. Huffman, 1983: Absorption and Scattering of Light by Small Particles, New York: John Wiley & Sons.Google Scholar
  6. Colton, D., and R. Kress, 1984: Integral Methods in Scattering Theory, New York: John Wiley & Sons.Google Scholar
  7. Farafonov, V. G., 1983: Diffraction of a plane electromagnetic wave by a dielectric spheroid, (Sov.) Diff. Equat., 19, 1765–1777.Google Scholar
  8. Farafonov, V. G., 1984: Scattering of electromagnetic waves by a perfectly conducting spheroid, (Sov.) Radiotech. Electron., 29, 1857–1865.Google Scholar
  9. Farafonov, V. G., 2001: New recursive solution of the problem of scattering of electromagnetic radiation by multilayered spheroidal particles, Opt. Spectr., 90, 743–752.CrossRefGoogle Scholar
  10. Farafonov, V. G., 2011: A unified approach using spheroidal functions for solving the problem of light scattering by a axisymmetric particles, J. Math. Sci., 175, 698–723.CrossRefGoogle Scholar
  11. Farafonov, V. G., and V. B. Il’in, 2006: Single light scattering: computational methods, In Light Scattering Reviews, A. A. Kokhanovsky (ed.), Berlin: Springer-Praxis, pp. 125– 177.Google Scholar
  12. Farafonov, V. G., and S. Y. Slavyanov, 1980: Diffraction of a plane wave by a perfectly conducting spheroid, (Sov.) Radiotech. Electron., 25, 2056–2065.Google Scholar
  13. Farafonov, V. G., and N. V. Voshchinnikov, 2012: Light scattering by a multilayered spheroidal particle, Appl. Opt., 51, 1586–1597.CrossRefGoogle Scholar
  14. Farafonov, V. G., N. V. Voshchinnikov, and V. V. Somsikov, 1996: Light scattering by a core-mantle spheroidal particle, Appl. Opt., 35, 5412–5426.CrossRefGoogle Scholar
  15. Farafonov, V. G., V. B. Il‘in, and A. A. Vinokurov, 2007: On use of the field expansions in terms of spheroidal functions, J. Quant. Spectr. Rad. Transfer, 106, 33–41.Google Scholar
  16. Farafonov, V. G., V. B. Il‘in, and A. A. Vinokurov, 2010: Near- and far-field light scattering by nonspherical particles: applicability of methods that involve a spherical basis, Opt. Spectr., 109, 432–443.Google Scholar
  17. Flammer, C., 1953: The vector wave function solution of electromagnetic wave by circular discs and apertures. II. The diffraction problems, J. Appl. Phys., 24, 1224–1231.Google Scholar
  18. Flammer, C., 1957: Spheroidal Wave Functions, Stanford: Stanford University Press.Google Scholar
  19. Hovenier, J. W., K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, 1996: Computations of scattering matrices of four types of nonspherical particles using diverse methods, J. Quant. Spectr. Rad. Transfer, 55, 695–205.CrossRefGoogle Scholar
  20. van de Hulst, H. C., 1957: Light Scattering by Small Particles, New York: John Wiley & Sons.Google Scholar
  21. Il’in, V.B., N. V. Voshchinnikov, V. G. Farafonov, Th. Henning, and A. Ya. Perelman, 2002: Light scattering tools for cosmic dust modeling, in Videen, G., and M. Kocifaj (eds), Optics of Cosmic Dust, Kluwer Academic Publishers, pp. 71–88.Google Scholar
  22. Il‘in, V. B., V. G. Farafonov, and E. V. Farafonov, 2007: Extended boundary condition method in combination with field expansions in terms of spheroidal functions, Opt. Spectr., 102, 278–289.Google Scholar
  23. Jackson, J. D., 1975: Classical Electrodynamics, New York: John Wiley & Sons.Google Scholar
  24. Kahnert, F. M., 2003a: Surface-integral formulation for electromagnetic scattering in spheroidal coordinates, J. Quant. Spectr. Rad. Transfer, 77, 61–78.CrossRefGoogle Scholar
  25. Kahnert, F. M., 2003b: Numerical methods in electromagnetic scattering theory, J. Quant. Spectr. Rad. Transfer, 7980, 775–824.CrossRefGoogle Scholar
  26. Kantorovich, L. V., and V. I. Krylov, 1964: Approximate Methods of Higher Analysis, New York: John Wiley & Sons.Google Scholar
  27. Komarov, I. V., L. I. Ponomarev, and S. Yu. Slavyanov, 1976: Spheroidal and Coulomb Spheroidal Functions, Moscow: Nauka.Google Scholar
  28. Lopatin, V. N., and F. Ya. Sid’ko, 1988: Introduction in Optics of Cell’s Suspension, Novosibirsk: Nauka.Google Scholar
  29. Meixner, J., 1950: Theorie der Beugung electromagnetischer Wellen in der vollkommen leitenden Kreissscheibe und verwandte Problemen, Ann. Phys., 6(7), 157–168.CrossRefGoogle Scholar
  30. Meixner, J., and W. Andrejewski, 1953: Strenge Theorie der Beugung ebener electromagnetischer Wellen an der vollkommen leitenden Kreissscheibe und an der kreisformigen Offnung im vollkommen leitenden ebenen Schirm. Ann. Phys., 6, 227–236.CrossRefGoogle Scholar
  31. Meixner, J., and F. W. Schefke, 1954: Mathieusche Funktionen und Scheroid Funktionen, Berlin: Springer Verlag.Google Scholar
  32. Meixner, J., F. W. Schefke, and G.Wolf, 1980: Mathieu functions and spheroidal functions and their mathematical foundations. Lect. Notes in Mathem., 837–886.Google Scholar
  33. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: a review, J. Quant. Spectr. Rad. Transfer, 55, 535–575.CrossRefGoogle Scholar
  34. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles, San Diego: Academic Press.Google Scholar
  35. Mishchenko, M. I., L. D. Travis, and A. Lacis, 2002: Scattering, Absorption and Emission of Light by Small Particles, Cambridge, UK: Cambridge University Press.Google Scholar
  36. Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics, NewYork: McGraw- Hill.Google Scholar
  37. Onaka, T., 1980: Light scattering by spheroidal grains, Ann. Tokyo Astron. Observ., 18, 1–54.Google Scholar
  38. Schultz, F. M., K. Stamnes, and J. J. Stamnes, 1998: Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T-matrix computed in spheroidal coordinates, Appl. Opt., 37, 7875–7896.CrossRefGoogle Scholar
  39. Seker, S. S., 1986: Radar cross-section of thin dielectric bodies, IEEE Proc., H-133, 305– 309.Google Scholar
  40. Sinha, B. P., and R. H. McPhie, 1977: Electromagnetic scattering by prolate spheroids for a plane waves with arbitrary polarization and angle of incidence, Radio Sci., 12, 171–184.CrossRefGoogle Scholar
  41. Stratton, J. A., 1941: Electromagnetic Theory, New York: McGrow-Hill.Google Scholar
  42. Voshchinnikov, N. V., 1996: Electromagnetic scattering by homogeneous and coated spheroids: calculations using the separation of variables method, J. Quant. Spectr. Rad. Transfer, 55, 627–636.CrossRefGoogle Scholar
  43. Voshchinnikov, N.V., and V. G. Farafonov, 1988: Characteristics of radiation scattered by prolate and oblate perfectly conducting spheroids, (Sov.) Radiotech. Electron., 33, 1364–1373.Google Scholar
  44. Voshchinnikov, N. V., and V. G. Farafonov, 1993: Optical properties of spheroidal particles, Astrophys. Space Sci., 204, 19–86.CrossRefGoogle Scholar
  45. Voshchinnikov, N. V., and V. G. Farafonov, 2000: Applicability of quasi-static and Rayleigh approximations for spheroidal particles, Opt. Spectr., 88, 71–75.CrossRefGoogle Scholar
  46. Voshchinnikov, N. V., and V. G. Farafonov, 2003: Computation of radial prolate spheroidal wave functions using Jáffe’s series expansions, Comp. Math. Math. Phys., 43, 1299– 1309.Google Scholar
  47. Voshchinnikov, N. V., V. B. Il’in, Th. Henning, B. Michel, and V. G. Farafonov, 2000: Extinction and polarization of radiation by absorbing spheroids: shape/size effects and some benchmarks, J. Quant. Spectr. Rad. Transfer, 65, 877–893.Google Scholar
  48. Zakharova, N. T., and M. I. Mishchenko, 2000: Scattering properties of needlelike and platelike ice spheroids with moderate size parameters, Appl. Opt., 39, 5052–5057.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Applied MathematicsSt. Petersburg University of Aerospace InstrumentationSt. PetersburgRussia

Personalised recommendations