On Computing Tractable Variations of Unordered Tree Edit Distance with Network Algorithms

  • Yoshiyuki Yamamoto
  • Kouichi Hirata
  • Tetsuji Kuboyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7258)

Abstract

The problem of computing the standard edit distance between unordered trees is known to be intractable. To circumvent this hardness result, several tractable variations have been proposed. The algorithms of these variations include the submodule of a network algorithm, either the minimum cost maximum flow algorithm or the maximum weighted bipartite matching algorithm. In this paper, we point out that these network algorithms are replaceable, and give the experimental results of computing these variations with both network algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. Prentice Hall (1993)Google Scholar
  2. 2.
    Chawathe, S.S.: Comparing hierarchical data in external memory. In: Proc. VLDB 1999, pp. 90–101 (1999)Google Scholar
  3. 3.
    Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18, 1013–1036 (1989)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-Hard Results for Finding an Edit Distance between Unordered Trees. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Kuboyama, T.: Matching and learning in trees, Ph.D thesis, University of Tokyo (2007), http://tk.cc.gakushuin.ac.jp/doc/kuboyama2007phd.pdf
  6. 6.
    Kuboyama, T., Shin, K., Kashima, H.: Flexible tree kernels based on counting the number of tree mappings. In: Proc. MLG 2006, pp. 61–72 (2006)Google Scholar
  7. 7.
    Lu, S.-Y.: A tree-to-tree distance and its application to cluster analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1, 219–224 (1979)MATHGoogle Scholar
  8. 8.
    Luke, S., Panait, L.: A survey and comparison of tree generation algorithms. In: Proc. GECCO 2001, pp. 81–88 (2001)Google Scholar
  9. 9.
    Selkow, S.M.: The tree-to-tree editing problem. Inform. Process. Lett. 6, 184–186 (1977)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Wang, J.T.L., Zhang, K.: Finding similar consensus between trees: An algorithm and a distance hierarchy. Pattern Recog. 34, 127–137 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Wang, Y., DeWitt, D.J., Cai, J.-Y.: X-Diff: An effective change detection algorithm for XML documents. In: Proc. ICDE 2003, pp. 519–530 (2003)Google Scholar
  13. 13.
    Zhang, K.: Algorithms for the constrained editing distance between ordered labeled trees and related problems. Pattern Recog. 28, 463–474 (1995)CrossRefGoogle Scholar
  14. 14.
    Zhang, K.: A constrained edit distance between unordered labeled trees. Algorithmica 15, 205–222 (1996)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inform. Process. Let. 49, 249–254 (1994)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inform. Process. Let. 42, 133–139 (1992)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected acyclic graphs. Int. J. Found. Comput. Sci. 7, 43–58 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoshiyuki Yamamoto
    • 1
  • Kouichi Hirata
    • 2
  • Tetsuji Kuboyama
    • 3
  1. 1.Graduate School of Computer Science and Systems EngineeringKyushu Institute of TechnologyIizukaJapan
  2. 2.Department of Artificial IntelligenceKyushu Institute of TechnologyIizukaJapan
  3. 3.Computer CenterGakushuin UniversityToshimaJapan

Personalised recommendations