An A* Algorithm for Computing Edit Distance between Rooted Labeled Unordered Trees

  • Shoichi Higuchi
  • Tomohiro Kan
  • Yoshiyuki Yamamoto
  • Kouichi Hirata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7258)

Abstract

In this paper, we design an A* algorithm for computing the edit distance between rooted labeled unordered trees. First, we introduce some lower bounding functions that provide the constant factor lower bounds on the edit distance. Then, by using the lower bounding functions as a heuristic function, we design the A* algorithm as the best-first search for the edit distance search tree. Finally, we give experimental results for the A* algorithm.

Keywords

Cost Function Short Path Edit Distance Heuristic Function Edit Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput. Sci. 337, 217–239 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinformatics 12 (2011)Google Scholar
  3. 3.
    Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-Hard Results for Finding an Edit Distance between Unordered Trees. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Horesh, Y., Mehr, R., Unger, R.: Designing an \(A^*\!\!\) algorithm for calculating edit distance between rooted-unordered trees. J. Comput. Bio. 13, 1165–1176 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kailing, K., Kriegel, H.-P., Schönauer, S., Seidl, T.: Efficient Similarity Search for Hierarchical Data in Large Databases. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Shasha, D., Wang, J.T.-L., Zhang, K., Shih, F.Y.: Exact and approximate algorithms for unordered tree matching. IEEE Trans. Sys. Man and Cybernet. 24, 668–678 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Zhang, K., Shasha, D.: Tree pattern matching. In: Apostolico, A., Galil, Z. (eds.) Pattern Matching Algorithms, pp. 341–371 (1997)Google Scholar
  9. 9.
    Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inform. Process. Lett. 49, 249–254 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inform. Process. Lett. 42, 133–139 (1992)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shoichi Higuchi
    • 1
  • Tomohiro Kan
    • 1
  • Yoshiyuki Yamamoto
    • 1
  • Kouichi Hirata
    • 2
  1. 1.Graduate School of Computer Science and Systems EngineeringKyushu Institute of TechnologyIizukaJapan
  2. 2.Department of Artificial IntelligenceKyushu Institute of TechnologyIizukaJapan

Personalised recommendations