Rigid and Soft Body Simulation Featuring Realistic Walk Behaviour

  • Oliver Urbann
  • Sören Kerner
  • Stefan Tasse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

Using a simulation for development and research of robot motions, especially walking motions, has advantages like saving real hardware, being able to replay specific situations or logging various data. Unfortunately research in this area using a simulation depends on transferability of the results to reality, which is not given for common robotic simulators. This paper presents extensions to a basic rigid body physics simulation leading to more realism. Parametrization matching a particular real robot is done using Evolutionary Strategies. Using stable walking and kicking motions as reference for the ES the newly developed MoToFlex simulator is able to reflect typical walking issues which can be observed in reality using different walking motions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czarnetzki, S., Kerner, S., Urbann, O.: Applying Dynamic Walking Control for Biped Robots. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Gouaillier, D., Collette, C., Kilner, C.: Omni-directional closed-loop walk for Nao. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 448–454 (December 2010)Google Scholar
  3. 3.
    Hebbel, M., Nistico, W., Fisseler, D.: Learning in a High Dimensional Space: Fast Omnidirectional Quadrupedal Locomotion. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 314–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Hein, D., Hild, M.: Simloid - research on biped robots controller, using physical simulation and machine learning algorithms. In: Concurrency, Specification and Programming, CSP 2006. Informatik-Berichte, vol. 1, pp. 143–151. (2006)Google Scholar
  5. 5.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: ICRA, pp. 1321–1326 (1998)Google Scholar
  6. 6.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generator allowing auxiliary ZMP control. In: IROS, pp. 2993–2999. IEEE (2006)Google Scholar
  7. 7.
    Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and evaluation of interactive humanoid robots. Proceedings of the IEEE 92(11), 1839–1850 (2004)CrossRefGoogle Scholar
  8. 8.
    Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., Kajita, S.: Cybernetic human HRP-4C. In: 9th IEEE-RAS International Conference on Humanoid Robots, 2009, Humanoids, pp. 7–14 (December 2009)Google Scholar
  9. 9.
    Kim, J.-Y., Park, I.-W., Oh, J.-H.: Experimental realization of dynamic walking of biped humanoid robot KHR-2 using ZMP feedback and inertial measurement. Advanced Robotics 20(6), 707–736 (2006)CrossRefGoogle Scholar
  10. 10.
    Laue, T., Spiess, K., Röfer, T.: SimRobot – A General Physical Robot Simulator and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Lima, J.L., Gonçalves, J.A., Costa, P.G., Moreira, A.P.: Humanoid Realistic Simulator - The servomotor joint modeling. In: ICINCO-RA, pp. 396–400 (2009)Google Scholar
  12. 12.
    Meriçli, Ç., Veloso, M.M.: Biped walk learning through playback and corrective demonstration. In: AAAI 2010: Twenty-Fourth Conference on Artificial Intelligence (2010)Google Scholar
  13. 13.
    Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 39–42 (2004)Google Scholar
  14. 14.
    Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko, K., Hirukawa, H.: Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3989–3994 (April 2007), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4209709
  15. 15.
    Nishiwaki, K., Kagami, S.: Online walking control system for humanoids with short cycle pattern generation. The International Journal of Robotics Research 28(6), 729–742 (2009), http://ijr.sagepub.com/cgi/doi/10.1177/0278364908097883 CrossRefGoogle Scholar
  16. 16.
    Obst, O., Rollmann, M.: SPARK – A generic simulator for physical multiagent simulations. Computer Systems Science and Engineering 20(5), 347–356 (2005)Google Scholar
  17. 17.
    Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley Interscience, New York (1995)Google Scholar
  18. 18.
    Smith, R.: Open dynamics engine (2002), http://www.ode.org
  19. 19.
    Vukobratovic, M., Borovac, B.: Zero-moment point – Thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oliver Urbann
    • 1
  • Sören Kerner
    • 1
  • Stefan Tasse
    • 1
  1. 1.Robotics Research Institute, Section Information TechnologyTU Dortmund UniversityDortmundGermany

Personalised recommendations