The Lambek-Grishin Calculus Is NP-Complete

  • Jeroen Bransen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7395)

Abstract

The Lambek-Grishin calculus LG is the symmetric extension of the non-associative Lambek calculus NL. In this paper we prove that the derivability problem for LG is NP-complete.

Keywords

Inference Rule Conjunctive Normal Form Logical Rule Boolean Formula Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Groote, P.: The Non-Associative Lambek Calculus with Product in Polynomial Time. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 128–139. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. Foret, A.: On the computation of joins for non associative Lambek categorial grammars. In: Proceedings of the 17th International Workshop on Unification (UNIF 2003), Valencia, Spain, June 8-9 (2003)Google Scholar
  3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  4. Goré, R.: Substructural logics on display. Logic Jnl IGPL 6(3), 451–504 (1998)MATHCrossRefGoogle Scholar
  5. Kandulski, M.: The non-associative Lambek calculus. Categorial Grammar, Linguistic and Literary Studies in Eastern Europe (LLSEE) 25, 141–151 (1988)MathSciNetGoogle Scholar
  6. Lambek, J.: The Mathematics of Sentence Structure. American Mathematical Monthly 65, 154–170 (1958)MathSciNetMATHCrossRefGoogle Scholar
  7. Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its Mathematical Aspects, pp. 166–178 (1961)Google Scholar
  8. Melissen, M.: The Generative Capacity of the Lambek–Grishin Calculus: A New Lower Bound. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp. 118–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. Moortgat, M.: Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 264–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic 38(6), 681–710 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  12. Pentus, M.: Lambek calculus is NP-complete. CUNY Ph.D. Program in Computer Science Technical Report TR–2003005. CUNY Graduate Center, New York (2003)Google Scholar
  13. Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jeroen Bransen
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations