Locality and the Complexity of Minimalist Derivation Tree Languages

  • Thomas Graf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7395)


Minimalist grammars provide a formalization of Minimalist syntax which allows us to study how the components of said theory affect its expressivity. A central concern of Minimalist syntax is the locality of the displacement operation Move. In Minimalist grammars, however, Move is unbounded. This paper is a study of the repercussions of limiting movement with respect to the number of slices a moved constituent is allowed to cross, where a slice is the derivation tree equivalent of the phrase projected by a lexical item in the derived tree. I show that this locality condition 1) has no effect on weak generative capacity 2) has no effect on a Minimalist derivation tree language’s recognizability by top-down automata 3) renders Minimalist derivation tree languages strictly locally testable, whereas their unrestricted counterparts aren’t even locally threshold testable.


Minimalist grammars locality subregular tree languages first-order logic top-down tree automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FOmod. ACM Transactions in Computational Logic 11, 1–32 (2009)CrossRefGoogle Scholar
  2. 2.
    Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  3. 3.
    den Dikken, M.: Arguments for successive-cyclic movement through SpecCP. A critical review. Linguistic Variation Yearbook 9, 89–126 (2009)CrossRefGoogle Scholar
  4. 4.
    Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. Lecture Notes in Computer Science (LNAI), vol. 6736, pp. 96–111. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Gécseg, F., Steinby, M.: Tree Automata. Academei Kaido, Budapest (1984)zbMATHGoogle Scholar
  6. 6.
    Harkema, H.: A Characterization of Minimalist Languages. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS, vol. 6736, pp. 129–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80 (2007)Google Scholar
  9. 9.
    Mainguy, T.: A probabilistic top-down parser for Minimalist grammars (2010), arXiv:1010.1826v1Google Scholar
  10. 10.
    Martens, W.: Static Analysis of XML Transformation- and Schema Languages. Ph.D. thesis, Hasselt University (2006)Google Scholar
  11. 11.
    Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata: Past, present, and future. In: Proceedings of Logic and Automata, pp. 505–530 (2008)Google Scholar
  12. 12.
    Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM Journal on Computing 26, 39–58 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Potthoff, A., Thomas, W.: Regular tree languages without unary symbols are star-free. In: Proceedings of the 9th International Symposium on Fundamentals of Computation Theory, pp. 396–405 (1993)Google Scholar
  15. 15.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press, Oxford (2011)Google Scholar
  18. 18.
    Stabler, E.P.: Top-down recognizers for MCFGs and MGs. In: Workshop on Cognitive Modeling and Computational Linguistics, pp. 39–48. ACL, Portland (2011)Google Scholar
  19. 19.
    Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293, 345–363 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997)CrossRefGoogle Scholar
  21. 21.
    Verdú-Mas, J.L., Carrasco, R.C., Calera-Rubio, J.: Parsing with probabilistic strictly locally testable tree languages. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1040–1050 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Graf
    • 1
  1. 1.Department of LinguisticsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations