Adaptively Secure Multi-Party Computation with Dishonest Majority

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

Adaptively secure multiparty computation is an essential and fundamental notion in cryptography. In this work we focus on the basic question of constructing a multiparty computation protocol secure against a malicious, adaptive adversary in the stand-alone setting without assuming an honest majority, in the plain model. It has been believed that this question can be resolved by composing known protocols from the literature. We show that in fact, this belief is fundamentally mistaken. In particular, we show:
  • Round inefficiency is unavoidable when using black-box simulation: There does not exist any \(o(\frac{n}{\log {n}})\) round protocol that adaptively securely realizes a (natural) n-party functionality with a black-box simulator. Note that most previously known protocols in the adaptive security setting relied on black-box simulators.

  • A constant round protocol using non-black-box simulation: We construct a constant round adaptively secure multiparty computation protocol in a setting without honest majority that makes crucial use of non-black box techniques.

Taken together, these results give the first resolution to the question of adaptively secure multiparty computation protocols with a malicious dishonest majority in the plain model, open since the first formal treatment of adaptive security for multiparty computation in 1996.

References

  1. 1.
    Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167 (1986)Google Scholar
  2. 2.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  3. 3.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648 (1996)Google Scholar
  4. 4.
    Beaver, D.: Adaptive zero knowledge and computational equivocation (extended abstract). In: STOC, pp. 629–638 (1996)Google Scholar
  5. 5.
    Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. J. Cryptology 24(4), 761–799 (2011)Google Scholar
  6. 6.
    Beaver, D.: Equivocable Oblivious Transfer. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 119–130. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Beaver, D.: Adaptively Secure Oblivious Transfer. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 300–314. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  10. 10.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved Non-committing Encryption with Applications to Adaptively Secure Protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Constructions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Pass, R., Wee, H.: Black-Box Constructions of Two-Party Protocols from One-Way Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Canetti, R.: Security and composition of multi-party cryptographic protocols. Cryptology ePrint Archive, Report 1998/018 (1998), http://eprint.iacr.org/
  14. 14.
    De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, SFCS 1992, pp. 427–436. IEEE Computer Society, Washington, DC (1992)Google Scholar
  15. 15.
    Beaver, D., Haber, S.: Cryptographic Protocols Provably Secure against Dynamic Adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd FOCS, pp. 106–115 (2001)Google Scholar
  17. 17.
    Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a constant number of rounds. In: FOCS, pp. 404–413 (2003)Google Scholar
  18. 18.
    Pass, R., Rosen, A.: New and improved constructions of nonmalleable cryptographic protocols. SIAM J. Comput. 38(2), 702–752 (2008)Google Scholar
  19. 19.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)Google Scholar
  20. 20.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-Party Computation with a Dishonest Majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Proc. 36th STOC, pp. 232–241 (2004)Google Scholar
  23. 23.
    Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)Google Scholar
  25. 25.
    Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991); Preliminary version In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols (2000), http://eprint.iacr.org/

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations