Group Signatures with Almost-for-Free Revocation

  • Benoît Libert
  • Thomas Peters
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

Group signatures are a central cryptographic primitive where users can anonymously and accountably sign messages in the name of a group they belong to. Several efficient constructions with security proofs in the standard model (i.e., without the random oracle idealization) appeared in the recent years. However, like standard PKIs, group signatures need an efficient revocation system to be practical. Despite years of research, membership revocation remains a non-trivial problem: many existing solutions do not scale well due to either high overhead or constraining operational requirements (like the need for all users to update their keys after each revocation). Only recently, Libert, Peters and Yung (Eurocrypt’12) suggested a new scalable revocation method, based on the Naor-Naor-Lotspiech (NNL) broadcast encryption framework, that interacts nicely with techniques for building group signatures in the standard model. While promising, their mechanism introduces important storage requirements at group members. Namely, membership certificates, which used to have constant size in existing standard model constructions, now have polylog size in the maximal cardinality of the group (NNL, after all, is a tree-based technique and such dependency is naturally expected). In this paper we show how to obtain private keys of constant size. To this end, we introduce a new technique to leverage the NNL subset cover framework in the context of group signatures but, perhaps surprisingly, without logarithmic relationship between the size of private keys and the group cardinality. Namely, we provide a way for users to efficiently prove their membership of one of the generic subsets in the NNL subset cover framework. This technique makes our revocable group signatures competitive with ordinary group signatures (i.e., without revocation) in the standard model. Moreover, unrevoked members (as in PKIs) still do not need to update their keys at each revocation.

References

  1. 1.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups for Modular Protocol Design. Cryptology ePrint Archive: Report 2010/133 (2010)Google Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Acar, T., Nguyen, L.: Revocation for Delegatable Anonymous Credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive: Report 2005/385 (2005)Google Scholar
  6. 6.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Ateniese, G., Song, D., Tsudik, G.: Quasi-Efficient Revocation in Group Signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press (1993)Google Scholar
  10. 10.
    Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM Press (2004)Google Scholar
  18. 18.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Bresson, E., Stern, J.: Efficient Revocation in Group Signatures. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Brickell, E.: An efficient protocol for anonymously providing assurance of the container of the private key. Submission to the Trusted Computing Group (April 2003)Google Scholar
  22. 22.
    Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: ACM-CCS 2004, pp. 132–145 (2004)Google Scholar
  23. 23.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Camenisch, J., Kohlweiss, M., Soriente, C.: Solving Revocation with Efficient Update of Anonymous Credentials. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 454–471. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Catalano, D., Fiore, D.: Concise Vector Commitments and their Applications to Zero-Knowledge Elementary Databases. Cryptology ePrint Archive: Report 2011/495 (2011)Google Scholar
  28. 28.
    Cathalo, J., Libert, B., Yung, M.: Group Encryption: Non-interactive Realization in the Standard Model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  30. 30.
    Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Fuchsbauer, G.: Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signatures. Cryptology ePrint Archive: Report 2009/320 (2009)Google Scholar
  33. 33.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Groth, J.: Fully Anonymous Group SignaturesWithout Random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  38. 38.
    Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Izabachène, M., Libert, B., Vergnaud, D.: Block-Wise P-Signatures and Noninteractive Anonymous Credentials with Efficient Attributes. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. International Journal of Security and Networks (IJSN) 1(1/2), 24–45 (2006)CrossRefGoogle Scholar
  41. 41.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Libert, B., Vergnaud, D.: Group Signatures with Verifier-Local Revocation and Backward Unlinkability in the Standard Model. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  43. 43.
    Libert, B., Yung, M.: Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets with Short Proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    Libert, B., Peters, T., Yung, M.: Scalable Group Signatures with Revocation. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 609–627. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable Group Signature Schemes with Constant Costs for Signing and Verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  46. 46.
    Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes with Backward Unlinkability from Bilinear Maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  47. 47.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  48. 48.
    Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  49. 49.
    Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  50. 50.
    Song, D.: Practical forward secure group signature schemes. In: ACM-CCS 2001, pp. 225–234 (2001)Google Scholar
  51. 51.
    Tsang, P., Au, M.-H., Kapadia, A., Smith, S.: Blacklistable anonymous credentials: blocking misbehaving users without TTPs. In: ACM-CCS 2007, pp. 72–81 (2007)Google Scholar
  52. 52.
    Tsudik, G., Xu, S.: Accumulating Composites and Improved Group Signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  53. 53.
    Zhou, S., Lin, D.: Shorter Verifier-Local Revocation Group Signatures from Bilinear Maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 126–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Benoît Libert
    • 1
  • Thomas Peters
    • 1
  • Moti Yung
    • 2
    • 3
  1. 1.ICTEAM InstituteUniversité Catholique de LouvainLouvain la NeuveBelgium
  2. 2.Google Inc.Menlo ParkUSA
  3. 3.Columbia UniversityNew YorkUSA

Personalised recommendations