Advertisement

Universal Composability from Essentially Any Trusted Setup

  • Mike Rosulek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

It is impossible to securely carry out general multi-party computation in arbitrary network contexts like the Internet, unless protocols have access to some trusted setup. In this work we classify the power of such trusted (2-party) setup functionalities. We show that nearly every setup is either useless (ideal access to the setup is equivalent to having no setup at all) or else complete (composably secure protocols for all tasks exist in the presence of the setup). We further argue that those setups which are neither complete nor useless are highly unnatural.

The main technical contribution in this work is an almost-total characterization of completeness for 2-party setups. Our characterization treats setup functionalities as black-boxes, and therefore is the first work to classify completeness of arbitrary setup functionalities (i.e., randomized, reactive, and having behavior that depends on the global security parameter).

Keywords

Security Parameter Winning Strategy Oblivious Transfer Bypass Mode Uniform Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Computer Society (2004)Google Scholar
  2. 2.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Beimel, A., Malkin, T., Micali, S.: The All-or-Nothing Nature of Two-Party Secure Computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Naor, M. (ed.) FOCS, pp. 136–145. IEEE Computer Society (2001), Revised version on Cryptology ePrint Archive (2005), http://eprint.iacr.org/2000/067
  6. 6.
    Canetti, R.: Obtaining Universally Compoable Security: Towards the Bare Bones of Trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 88–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)Google Scholar
  10. 10.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: Trevisan, L. (ed.) FOCS, pp. 541–550. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503. ACM (2002)Google Scholar
  12. 12.
    Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an imperfect reference string. In: FOCS, pp. 249–259. IEEE Computer Society (2007)Google Scholar
  13. 13.
    Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J. Discrete Math. 4(1), 36–47 (1991)Google Scholar
  14. 14.
    Damgård, I., Nielsen, J.B., Orlandi, C.: On the Necessary and Sufficient Assumptions for UC Computation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 109–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  16. 16.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: STOC, pp. 291–304. ACM (1985)Google Scholar
  17. 17.
    Groth, J., Ostrovsky, R.: Cryptography in the Multi-string Model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Harnik, D., Naor, M., Reingold, O., Rosen, A.: Completeness in two-party secure computation: A computational view. J. Cryptology 19(4), 521–552 (2006)Google Scholar
  19. 19.
    Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability. Cryptology ePrint Archive, Report 2009/023 (2009), http://eprint.iacr.org/2009/023
  20. 20.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: FOCS, pp. 230–235. IEEE (1989)Google Scholar
  21. 21.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent general composition of secure protocols in the timing model. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 644–653. ACM (2005)Google Scholar
  23. 23.
    Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Katz, J., Kiayias, A., Kumaresan, R., Shelat, A., Zhou, H.-S.: From impossibility to completeness for deterministic two-party SFE (2011) (unpublished manuscript)Google Scholar
  25. 25.
    Kidron, D., Lindell, Y.: Impossibility results for universal composability in public-key models and with fixed inputs. J. Cryptology 24(3), 517–544 (2011)Google Scholar
  26. 26.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC, pp. 316–324. ACM (2000)Google Scholar
  27. 27.
    Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)Google Scholar
  28. 28.
    Kreitz, G.: A Zero-One Law for Secure Multi-party Computation with Ternary Outputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 382–399. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: Mitzenmacher, M. (ed.) STOC, pp. 179–188. ACM (2009)Google Scholar
  30. 30.
    Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized Environmental Security from Number Theoretic Assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)Google Scholar
  34. 34.
    Pass, R.: Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Prabhakaran, M., Rosulek, M.: Cryptographic Complexity of Multi-Party Computation Problems: Classifications and Separations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) STOC, pp. 242–251. ACM (2004)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MontanaMissoulaUSA

Personalised recommendations