Semantic Security for the Wiretap Channel

  • Mihir Bellare
  • Stefano Tessaro
  • Alexander Vardy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

The wiretap channel is a setting where one aims to provide information-theoretic privacy of communicated data based solely on the assumption that the channel from sender to adversary is “noisier” than the channel from sender to receiver. It has developed in the Information and Coding (I&C) community over the last 30 years largely divorced from the parallel development of modern cryptography. This paper aims to bridge the gap with a cryptographic treatment involving advances on two fronts, namely definitions and schemes. On the first front (definitions), we explain that the mis-r definition in current use is weak and propose two alternatives: mis (based on mutual information) and ss (based on the classical notion of semantic security). We prove them equivalent, thereby connecting two fundamentally different ways of defining privacy and providing a new, strong and well-founded target for constructions. On the second front (schemes), we provide the first explicit scheme with all the following characteristics: it is proven to achieve both security (ss and mis, not just mis-r) and decodability; it has optimal rate; and both the encryption and decryption algorithms are proven to be polynomial-time.

References

  1. 1.
    Andersson, M., Rathi, V., Thobaben, R., Kliewer, J., Skoglund, M.: Nested polar codes for wiretap and relay channels. Available at arxiv.org/abs/1006.3573 (2010)
  2. 2.
    Arıkan, E.: Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory 55(7), 3051–3073 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press (October 1997)Google Scholar
  4. 4.
    Bellare, M., Tessaro, S.: Polynomial-time, semantically-secure encryption achieving the secrecy capacity. Available as arxiv:org/abs/1201.3160 and Cryptology Eprint Archive Report 2012/022 (January 2012)
  5. 5.
    Bellare, M., Tessaro, S., Vardy, A.: A cryptographic treatment of the wiretap channel. Available as arxiv:org/abs/1201.2205 and Cryptology Eprint Archive Report 2012/15 (January 2012)
  6. 6.
    Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Security Engineering. Cambridge Academic Press (2011)Google Scholar
  7. 7.
    Bloch, M., Laneman, J.N.: On the secrecy capacity of arbitrary wiretap channels. In: Proceedings of the 46th Allerton Conference on Communications, Control, and Computing, pp. 818–825 (September 2008)Google Scholar
  8. 8.
    Cheraghchi, M., Didier, F., Shokrollahi, A.: Invertible extractors and wiretap protocols. IEEE Transactions on Information Theory 58(2), 1254–1274 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cohen, G., Zémor, G.: The wiretap channel applied to biometrics. In: Proc. of the International Symposium on Information Theory and Applications (2004)Google Scholar
  10. 10.
    Cohen, G., Zémor, G.: Syndrome coding for the wire-tap channel revisited. In: Proc. of the IEEE Information Theory Workshop (ITW 2006), pp. 33–36. IEEE (2006)Google Scholar
  11. 11.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons (1991)Google Scholar
  12. 12.
    Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica 2, 299–318 (1967)MathSciNetMATHGoogle Scholar
  13. 13.
    Csiszár, I.: Almost independence and secrecy capacity. Problems of Information Transmission 32(1), 40–47 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Transactions on Information Theory 24(3), 339–348 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Damgard, I., Pedersen, T., Pfitzmann, B.: Statistical secrecy and multibit commitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Dumer, I.: Concatenated codes and their multilevel generalizations. In: The Handbook of Coding Theory, pp. 1191–1988. Elsevier (1998)Google Scholar
  19. 19.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hayashi, M., Matsumoto, R.: Construction of wiretap codes from ordinary channel codes. In: Proceedings of the 2010 IEEE International Symposium on Information Theory (ISIT 2010), pp. 2538–2542. IEEE (2010)Google Scholar
  22. 22.
    Ho, S., Yeung, R.: The interplay between entropy and variational distance. IEEE Transactions on Information Theory 56(12), 5906–5929 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hof, E., Shamai, S.: Secrecy-achieving polar-coding. In: Proceedings of the IEEE Information Theory Workshop (ITW 2010). IEEE (2010)Google Scholar
  24. 24.
    ICC 2011 workshop on physical-layer security, Kyoto, Japan (June 2011)Google Scholar
  25. 25.
    Iwamoto, M., Ohta, K.: Security notions for information theoretically secure encryptions. In: Proceedings of the 2011 IEEE International Symposium on Information Theory (ISIT 2011), pp. 1777–1781. IEEE (2011)Google Scholar
  26. 26.
    Koyluoglu, O., ElGamal, H.: Polar coding for secure transmission. In: Proceedings of the IEEE International Symposium on Personal Indoor and Mobile Radio Communication, pp. 2698–2703 (2010)Google Scholar
  27. 27.
    Leung-Yan-Cheong, S.: On a special class of wire-tap channels. IEEE Transactions on Information Theory 23(5), 625–627 (1977)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Liang, Y., Poor, H., Shamai, S.: Information theoretic security. Foundations and Trends in Communications and Information Theory 5(4), 355–580 (2008)MATHGoogle Scholar
  29. 29.
    Mahdavifar, H., Vardy, A.: Achieving the secrecy capacity of wiretap channels using polar codes. In: Proceedings of the 2010 IEEE International Symposium on Information Theory (ISIT 2010), pp. 913–917. IEEE (2010)Google Scholar
  30. 30.
    Mahdavifar, H., Vardy, A.: Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Transactions on Information Theory 57(10), 6428–6443 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Maurer, U.: The strong secret key rate of discrete random triples. In: Blahut, R.E. (ed.) Communication and Cryptography – Two Sides of One Tapestry, pp. 271–285. Kluwer (1994)Google Scholar
  32. 32.
    Maurer, U.M., Wolf, S.: Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 351–368. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Muramatsu, J., Miyake, S.: Construction of wiretap channel codes by using sparse matrices. In: Proc. of the IEEE Information Theory Workshop (ITW 2009), pp. 105–109. IEEE (2009)Google Scholar
  34. 34.
    Ozarow, L.H., Wyner, A.D.: Wire-Tap Channel II. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 33–50. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  35. 35.
    Pinsker, M.S.: Information and information stability of random variables and processes. Holden Day, San Francisco (1964)MATHGoogle Scholar
  36. 36.
    Renner, R., Wolf, S.: Simple and Tight Bounds for Information Reconciliation and Privacy Amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  38. 38.
    Suresh, A., Subramanian, A., Thangaraj, A., Bloch, M., McLaughlin, S.W.: Strong secrecy for erasure wiretap channels. In: Proc. of the IEEE Information Theory Workshop (ITW 2010). IEEE (2010)Google Scholar
  39. 39.
    Tal, I., Vardy, A.: How to construct polar codes. In: Proc. of the IEEE Information Theory Workshop (ITW 2010). IEEE (2010)Google Scholar
  40. 40.
    Thangaraj, A., Dihidar, S., Calderbank, A., McLaughlin, S., Merolla, J.: Applications of LDPC codes to the wiretap channel. IEEE Transactions on Information Theory 53(8), 2933–2945 (2007)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Wyner, A.D.: The wire-tap channel. Bell Systems Tech. Journal 54(8), 1355–1387 (1975)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Ziva corporation, http://www.ziva-corp.com/

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Mihir Bellare
    • 1
  • Stefano Tessaro
    • 2
  • Alexander Vardy
    • 3
  1. 1.Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaUSA
  2. 2.CSAIL, Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Electrical & Computer EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations