Secret Sharing Schemes for Very Dense Graphs

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct the secret while every independent set in the graph does not get any information on the secret. Similar to secret-sharing schemes for general access structures, there are gaps between the known lower bounds and upper bounds on the share size for graphs. Motivated by the question of what makes a graph “hard” for secret-sharing schemes, we study very dense graphs, that is, graphs whose complement contains few edges. We show that if a graph with n vertices contains \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }\) edges for some constant \(0 \le \beta <1\), then there is a scheme realizing the graph with total share size of \(\tilde{O}(n^{5/4+3\beta /4})\). This should be compared to \(O(n^2/\log n)\) – the best upper bound known for general graphs. Thus, if a graph is “hard”, then the graph and its complement should have many edges. We generalize these results to nearly complete k-homogeneous access structures for a constant k. To complement our results, we prove lower bounds for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing schemes we prove a lower bound of \(\varOmega (n^{1+\beta /2})\).

References

  1. 1.
    Alon, N.: Covering graphs by the minimum number of equivalence relations. Combinatorica 6(3), 201–206 (1986)Google Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. John Wiley & Sons (2008)Google Scholar
  3. 3.
    Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Combinatorica 19(3), 301–319 (1999)Google Scholar
  4. 4.
    Beimel, A.: Secret-Sharing Schemes: A Survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. on Information Theory 40(3), 786–794 (1994)Google Scholar
  6. 6.
    Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs. Computational Complexity 6(1), 29–45 (1997)Google Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)Google Scholar
  8. 8.
    Benaloh, J., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 AFIPS National Computer Conference, pp. 313–317 (1979)Google Scholar
  10. 10.
    Blundo, C., De Santis, A., de Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptogr. 11(2), 107–122 (1997)Google Scholar
  11. 11.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. Theoretical Computer Science 154(2), 283–306 (1996)Google Scholar
  12. 12.
    Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decomposition and secret sharing schemes. J. of Cryptology 8(1), 39–64 (1995)Google Scholar
  13. 13.
    Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput. 6, 105–113 (1989)Google Scholar
  14. 14.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. of Cryptology 4(73), 123–134 (1991)Google Scholar
  15. 15.
    Bublitz, S.: Decomposition of graphs and monotone formula size of homogeneous functions. Acta Informatica 23, 689–696 (1986)Google Scholar
  16. 16.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. J. of Cryptology 6(3), 157–168 (1993)Google Scholar
  17. 17.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)Google Scholar
  18. 18.
    Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. of Cryptology 6(2), 87–96 (1993)Google Scholar
  19. 19.
    Cramer, R., Damgård, I., Maurer, U.: General Secure Multi-party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)Google Scholar
  20. 20.
    Di Crescenzo, G., Galdi, C.: Hypergraph decomposition and secret sharing. Discrete Applied Mathematics 157(5), 928–946 (2009)Google Scholar
  21. 21.
    Csirmaz, L.: Secret sharing schemes on graphs. Cryptology ePrint Archive, 2005/059 (2005)Google Scholar
  22. 22.
    Csirmaz, L.: An impossibility result on graph secret sharing. Des. Codes Cryptog. 53(3), 195–209 (2009)Google Scholar
  23. 23.
    Csirmaz, L., Tardos, G.: Secret sharing on trees: problem solved. Cryptology ePrint Archive, 2009/71 (2009)Google Scholar
  24. 24.
    Desmedt, Y., Frankel, Y.: Shared Generation of Authenticators and Signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)Google Scholar
  25. 25.
    van Dijk, M.: On the information rate of perfect secret sharing schemes. Des. Codes and Cryptog. 6, 143–169 (1995)Google Scholar
  26. 26.
    Erdös, P., Pyber, L.: Covering a graph by complete bipartite graphs. Discrete Mathematics 170(1-3), 249–251 (1997)Google Scholar
  27. 27.
    Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. of Cryptology 25(1), 434–463 (2012)Google Scholar
  28. 28.
    Gál, A.: A characterization of span program size and improved lower bounds for monotone span programs. In: 30th STOC, pp. 429–437 (1998)Google Scholar
  29. 29.
    Gál, A., Pudlák, P.: Monotone complexity and the rank of matrices. IPL 87, 321–326 (2003)Google Scholar
  30. 30.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: 13th CCS, pp. 89–98 (2006)Google Scholar
  31. 31.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 1987, pp. 99–102 (1987)Google Scholar
  32. 32.
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Structures & Algorithms 7, 157–166 (1995)Google Scholar
  33. 33.
    Jukna, S.: On set intersection representations of graphs. Journal of Graph Theory 61, 55–75 (2009)Google Scholar
  34. 34.
    Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity Theory, pp. 102–111 (1993)Google Scholar
  35. 35.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. on Information Theory 29(1), 35–41 (1983)Google Scholar
  36. 36.
    Martí-Farré, J., Padró, C.: Secret sharing schemes on sparse homogeneous access structures with rank three. Electr. J. Comb. 11(1) (2004)Google Scholar
  37. 37.
    Martí-Farré, J., Padró, C.: Secret sharing schemes with three or four minimal qualified subsets. Des. Codes Cryptog. 34(1), 17–34 (2005)Google Scholar
  38. 38.
    Martí-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids. Journal of Mathematical Cryptology 4(2), 95–120 (2010)Google Scholar
  39. 39.
    Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd CCS, pp. 157–167 (1996)Google Scholar
  40. 40.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. on Information Theory 46, 2596–2605 (2000)Google Scholar
  41. 41.
    Padró, C., Sáez, G.: Lower bounds on the information rate of secret sharing schemes with homogeneous access structure. IPL 83(6), 345–351 (2002)Google Scholar
  42. 42.
    Salas, J., Sokal, A.D.: Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Statist. Phys. 86, 551–579 (1997)Google Scholar
  43. 43.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)Google Scholar
  44. 44.
    Shankar, B., Srinathan, K., Pandu Rangan, C.: Alternative Protocols for Generalized Oblivious Transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  45. 45.
    Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes. Bulletin of the ICA 1, 71–88 (1991)Google Scholar
  46. 46.
    Stinson, D.R.: New General Lower Bounds on the Information Rate of Secret Sharing Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 168–182. Springer, Heidelberg (1993)Google Scholar
  47. 47.
    Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. on Information Theory 40(1), 118–125 (1994)Google Scholar
  48. 48.
    Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: INFOCOM, pp. 718–724 (1997)Google Scholar
  49. 49.
    Sun, H.-M., Wang, H., Ku, B.-H., Pieprzyk, J.: Decomposition construction for secret sharing schemes with graph access structures in polynomial time. SIAM J. Discret. Math. 24, 617–638 (2010)Google Scholar
  50. 50.
    Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptog. 58(1), 11–21 (2011)Google Scholar
  51. 51.
    Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)Google Scholar
  52. 52.
    Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  1. 1.Ben Gurion University of the NegevBe’er ShevaIsrael
  2. 2.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations