Auditory Time-Frequency Masking: Psychoacoustical Data and Application to Audio Representations

  • Thibaud Necciari
  • Peter Balazs
  • Richard Kronland-Martinet
  • Sølvi Ystad
  • Bernhard Laback
  • Sophie Savel
  • Sabine Meunier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7172)


In this paper, the results of psychoacoustical experiments on auditory time-frequency (TF) masking using stimuli (masker and target) with maximal concentration in the TF plane are presented. The target was shifted either along the time axis, the frequency axis, or both relative to the masker. The results show that a simple superposition of spectral and temporal masking functions does not provide an accurate representation of the measured TF masking function. This confirms the inaccuracy of simple models of TF masking currently implemented in some perceptual audio codecs. In the context of audio signal processing, the present results constitute a crucial basis for the prediction of auditory masking in the TF representations of sounds. An algorithm that removes the inaudible components in the wavelet transform of a sound while causing no audible difference to the original sound after re-synthesis is proposed. Preliminary results are promising, although further development is required.


auditory masking time-frequency representation Gabor wavelets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agerkvist, F.T.: A time-frequency auditory model using wavelet packets. J. Audio Eng. Soc. 44(1/2), 37–50 (1996)Google Scholar
  2. 2.
    Balazs, P., Dörfler, M., Holighaus, N., Jaillet, F., Velasco, G.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236(6), 1481–1496 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balazs, P., Laback, B., Eckel, G., Deutsch, W.A.: Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Trans. Audio Speech Lang. Process. 18(1), 34–49 (2010)CrossRefGoogle Scholar
  4. 4.
    Daubechies, I.: Ten Lectures on Wavelets, 1st edn. CMB-NSF Lecture Notes nr. 61. SIAM, Philadelphia (1992)Google Scholar
  5. 5.
    Delgutte, B.: Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers. J. Acoust. Soc. Am. 87(2), 791–809 (1990)CrossRefGoogle Scholar
  6. 6.
    Duifhuis, H.: Consequences of peripheral frequency selectivity for nonsimultaneous masking. J. Acoust. Soc. Am. 54(6), 1471–1488 (1973)CrossRefGoogle Scholar
  7. 7.
    Fastl, H.: Temporal masking effects: III. Pure tone masker. Acustica 43(5), 282–294 (1979)Google Scholar
  8. 8.
    Florentine, M.: Level discrimination of tones as a function of duration. J. Acoust. Soc. Am. 79(3), 792–798 (1986)CrossRefGoogle Scholar
  9. 9.
    Glasberg, B.R., Moore, B.C.J.: Development and evaluation of a model for predicting the audibility of time-varying sounds in the presence of background sounds. J. Audio Eng. Soc. 53(10), 906–918 (2005)Google Scholar
  10. 10.
    Gröchening, K.: Foundations of time-frequency analysis, 1st edn. Birkhaüser, Boston (2001)Google Scholar
  11. 11.
    Hamdi, K.N., Ali, M., Tewfik, A.H.: Low bit rate high quality audio coding with combined harmonic and wavelet representations. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP 1996), Atlanta, GA, USA, vol. 2, pp. 1045–1048 (1996)Google Scholar
  12. 12.
    He, X., Scordilis, M.S.: Psychoacoustic music analysis based on the discrete wavelet packet transform. Res. Let. Signal Process. 2008(4), 1–5 (2008)Google Scholar
  13. 13.
    van der Heijden, M., Kohlrausch, A.: Using an excitation-pattern model to predict auditory masking. Hear. Res. 80, 38–52 (1994)CrossRefGoogle Scholar
  14. 14.
    Huang, Y.H., Chiueh, T.D.: A new audio coding scheme using a forward masking model and perceptually weighted vector quantization. IEEE Trans. Audio Speech Lang. Process. 10(5), 325–335 (2002)CrossRefGoogle Scholar
  15. 15.
    Jaillet, F., Balazs, P., Dörfler, M.: Nonstationary Gabor frames. In: Proc. of the 8th International Conference on Sampling Theory and Applications (SAMPTA 2009), Marseille, France (May 2009)Google Scholar
  16. 16.
    Jeong, H., Ih, J.: Implementation of a new algorithm using the STFT with variable frequency resolution for the time-frequency auditory model. J. Audio Eng. Soc. 47(4), 240–251 (1999)Google Scholar
  17. 17.
    Jepsen, M., Ewert, S.D., Dau, T.: A computational model of human auditory signal processing and perception. J. Acoust. Soc. Am. 124(1), 422–438 (2008)CrossRefGoogle Scholar
  18. 18.
    Kidd Jr., G., Feth, L.L.: Patterns of residual masking. Hear. Res. 5(1), 49–67 (1981)CrossRefGoogle Scholar
  19. 19.
    Laback, B., Balazs, P., Necciari, T., Savel, S., Meunier, S., Ystad, S., Kronland-Martinet, R.: Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids. J. Acoust. Soc. Am. 129(2), 888–897 (2011)CrossRefGoogle Scholar
  20. 20.
    Moore, B.C.J.: An introduction to the psychology of hearing, 5th edn. Academic Press, London (2003)Google Scholar
  21. 21.
    Moore, B.C.J., Alcántara, J.I., Glasberg, B.R.: Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane. Hear. Res. 163, 101–110 (2002)CrossRefGoogle Scholar
  22. 22.
    Moore, B.C.J., Alcántara, J.I., Dau, T.: Masking patterns for sinusoidal and narrow-band noise maskers. J. Acoust. Soc. Am. 104(2), 1023–1038 (1998)CrossRefGoogle Scholar
  23. 23.
    Necciari, T.: Auditory time-frequency masking: Psychoacoustical measures and application to the analysis-synthesis of sound signals. Ph.D. thesis, University of Provence Aix-Marseille I, France (October 2010)Google Scholar
  24. 24.
    O’Donovan, J.J., Dermot, J.F.: Perceptually motivated time-frequency analysis. J. Acoust. Soc. Am. 117(1), 250–262 (2005)CrossRefGoogle Scholar
  25. 25.
    Oxenham, A.J.: Forward masking: Adaptation or integration? J. Acoust. Soc. Am. 109(2), 732–741 (2001)CrossRefGoogle Scholar
  26. 26.
    Patterson, R.D., Allerhand, M.H., Giguère, C.: Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J. Acoust. Soc. Am. 98, 1890–1894 (1995)CrossRefGoogle Scholar
  27. 27.
    Plack, C.J., Oxenham, A.J., Drga, V.: Linear and nonlinear processes in temporal masking. Acta Acust. United Ac. 88(3), 348–358 (2002)Google Scholar
  28. 28.
    Plack, C.J., Oxenham, A.J.: Basilar-membrane nonlinearity and the growth of forward masking. J. Acoust. Soc. Am. 103(3), 1598–1608 (1998)CrossRefGoogle Scholar
  29. 29.
    Robles, L., Ruggero, A.: Mechanics of the mammalian cochlea. Physiol. Rev. 81(3), 1305–1352 (2001)Google Scholar
  30. 30.
    van Schijndel, N.H., Houtgast, T., Festen, J.M.: Intensity discrimination of Gaussian-windowed tones: Indications for the shape of the auditory frequency-time window. J. Acoust. Soc. Am. 105(6), 3425–3435 (1999)CrossRefGoogle Scholar
  31. 31.
    Soderquist, D.R., Carstens, A.A., Frank, G.J.H.: Backward, simultaneous, and forward masking as a function of signal delay and frequency. J. Aud. Res. 21, 227–245 (1981)Google Scholar
  32. 32.
    Spanias, P., Painter, T., Atti, V.: Audio Signal Processing and Coding. Wiley-Interscience, Hoboken (2007)CrossRefGoogle Scholar
  33. 33.
    Terhardt, E.: Calculating virtual pitch. Hear. Res. 1, 155–182 (1979)CrossRefGoogle Scholar
  34. 34.
    Vafin, R., Andersen, S.V., Kleijn, W.B.: Exploiting time and frequency masking in consistent sinusoidal analysis-synthesis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP 2000), Istanbul, Turkey, vol. 2, pp. 901–904 (2000)Google Scholar
  35. 35.
    Vetterli, M., Kovačević, J.: Wavelets and subband coding. Prentice Hall PTR, Englewood Cliffs (1995)zbMATHGoogle Scholar
  36. 36.
    Zwicker, E.: Dependence of post-masking on masker duration and its relation to temporal effects in loudness. J. Acoust. Soc. Am. 75(1), 219–223 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thibaud Necciari
    • 1
    • 2
  • Peter Balazs
    • 1
  • Richard Kronland-Martinet
    • 2
  • Sølvi Ystad
    • 2
  • Bernhard Laback
    • 1
  • Sophie Savel
    • 2
  • Sabine Meunier
    • 2
  1. 1.Acoustics Research InstituteAustrian Academy of SciencesViennaAustria
  2. 2.Laboratoire de Mécanique et d’AcoustiqueCNRS-UPR 7051, Aix-Marseille Univ., Centrale MarseilleMarseille Cedex 20France

Personalised recommendations