Stella and Zygotic Reprogramming

  • Toshinobu Nakamura
  • Toru Nakano
Part of the Epigenetics and Human Health book series (EHH)


The development of a mouse begins after fertilization, the fusion of the ovulated oocyte with a sperm. During the development of the preimplantation embryo, the parental genomes undergo extensive epigenetic reprogramming, including genome-wide DNA demethylation. Shortly after fertilization, DNA methylation of the paternal genome is rapidly removed by a replication-independent process. In contrast, DNA methylation of the maternal genome is reduced gradually, in a replication-dependent manner. Thus, DNA methylation status is quite different between the paternal and maternal genomes in the zygote stage; this difference is called “epigenetic asymmetry.” Recent studies have revealed that the maternal factor Stella (also known as PGC7 and Dppa3, “developmental pluripotency-associated 3”) is required for both the maintenance of DNA methylation status of some imprinted genes and retrotransposons and for the establishment of epigenetic asymmetry in zygotes.


Imprint Gene Somatic Cell Nuclear Transfer Preimplantation Embryo Nuclear Export Signal Preimplantation Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama T, Suzuki O, Matsuda J, Aoki F (2011) Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 7:e1002279. doi: 10.1371/journal.pgen.1002279 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aravind L, Koonin EV (2000) SAP – a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114PubMedCrossRefGoogle Scholar
  3. Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46:317–320PubMedGoogle Scholar
  4. Bortvin A, Eggan K, Skaletsky H et al (2003) Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130:1673–1680PubMedCrossRefGoogle Scholar
  5. Bortvin A, Goodheart M, Liao M, Page DC (2004) Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev Biol 4:2. doi: 10.1186/1471-213X-4-2 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60:580–587PubMedCrossRefGoogle Scholar
  7. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99. doi: 10.1038/nature02886 PubMedCrossRefGoogle Scholar
  8. Brykczynska U, Hisano M, Erkek S et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687. doi: 10.1038/nsmb.1821 PubMedCrossRefGoogle Scholar
  9. Chan MM, Smith ZD, Egli D, Regev A, Meissner A (2012) Mouse ooplasm confers context-specific reprogramming capacity. Nat Genet 44:978–980. doi: 10.1038/ng.2382 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Daujat S, Weiss T, Mohn F et al (2009) H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 16:777–781. doi: 10.1038/nsmb.1629 PubMedCrossRefGoogle Scholar
  11. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627. doi: 10.1126/science.1190614 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fu XD, Maniatis T (1992) Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. Science 256:535–538PubMedCrossRefGoogle Scholar
  13. Gu TP, Guo F, Yang H et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610. doi: 10.1038/nature10443 PubMedCrossRefGoogle Scholar
  14. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478. doi: 10.1038/nature08162 PubMedCentralPubMedGoogle Scholar
  15. He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307. doi: 10.1126/science.1210944 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ideraabdullah FY, Bartolomei MS (2011) ZFP57: KAPturing DNA methylation at imprinted loci. Mol Cell 44:341–342. doi: 10.1016/j.molcel.2011.10.008 PubMedCrossRefGoogle Scholar
  17. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194. doi: 10.1126/science.1212483 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Inoue A, Shen L, Dai Q, He C, Zhang Y (2011) Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res 21:1670–1676. doi: 10.1038/cr.2011.189 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647. doi: 10.1073/pnas.1014033108 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. doi: 10.1126/science.1210597 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kim JM, Liu H, Tazaki M, Nagata M, Aoki F (2003) Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 162:37–46. doi: 10.1083/jcb.200303047 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93. doi: 10.1002/gene.10168 PubMedCrossRefGoogle Scholar
  23. Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12. doi: 10.1186/1471-213X-4-12 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557. doi: 10.1016/j.devcel.2008.08.014 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Liu H, Aoki F (2002) Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote 10:327–332PubMedGoogle Scholar
  26. Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131:2269–2280. doi: 10.1242/dev.01116 PubMedCrossRefGoogle Scholar
  27. Liu YJ, Nakamura T, Nakano T (2012) Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis. Biol Reprod 86:40. doi: 10.1095/biolreprod.111.095018 PubMedCrossRefGoogle Scholar
  28. Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–1390. doi: 10.1038/nature04059 PubMedCrossRefGoogle Scholar
  29. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502. doi: 10.1038/35000654 PubMedCrossRefGoogle Scholar
  30. Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB (2012) Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335:1499–1502. doi: 10.1126/science.1216154 PubMedCrossRefGoogle Scholar
  31. Nakamura T, Arai Y, Umehara H et al (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71. doi: 10.1038/ncb1519 PubMedCrossRefGoogle Scholar
  32. Nakamura T, Liu YJ, Nakashima H et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–419. doi: 10.1038/nature11093 PubMedGoogle Scholar
  33. Niemann H, Tian XC, King WA, Lee RS (2008) Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135:151–163. doi: 10.1530/REP-07-0397 PubMedCrossRefGoogle Scholar
  34. Ohinata Y, Sano M, Shigeta M, Yamanaka K, Saitou M (2008) A comprehensive, non-invasive visualization of primordial germ cell development in mice by the Prdm1-mVenus and Dppa3-ECFP double transgenic reporter. Reproduction 136:503–514. doi: 10.1530/REP-08-0053 PubMedCrossRefGoogle Scholar
  35. Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet 17:275–276. doi: 10.1038/ng1197-275 PubMedCrossRefGoogle Scholar
  36. Ooga M, Inoue A, Kageyama S, Akiyama T, Nagata M, Aoki F (2008) Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod 78:413–424. doi: 10.1095/biolreprod.107.063453 PubMedCrossRefGoogle Scholar
  37. Payer B, Saitou M, Barton SC et al (2003) Stella is a maternal effect gene required for normal early development in mice. Curr Biol 13:2110–2117PubMedCrossRefGoogle Scholar
  38. Popp C, Dean W, Feng S et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105. doi: 10.1038/nature08829 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Quenneville S, Verde G, Corsinotti A et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372. doi: 10.1016/j.molcel.2011.08.032 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 12:2108–2113PubMedCentralPubMedCrossRefGoogle Scholar
  41. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300. doi: 10.1038/nature00927 PubMedCrossRefGoogle Scholar
  42. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182. doi: 10.1006/dbio.2001.0501 PubMedCrossRefGoogle Scholar
  43. Santos F, Zakhartchenko V, Stojkovic M et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121PubMedCrossRefGoogle Scholar
  44. Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236. doi: 10.1016/j.ydbio.2005.01.025 PubMedCrossRefGoogle Scholar
  45. Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117:4449–4459. doi: 10.1242/jcs.01328 PubMedCrossRefGoogle Scholar
  46. Sato M, Kimura T, Kurokawa K et al (2002) Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev 113:91–94PubMedCrossRefGoogle Scholar
  47. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344. doi: 10.1038/nature10960 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461. doi: 10.1387/ijdb.052073mt PubMedCrossRefGoogle Scholar
  49. van der Heijden GW, Dieker JW, Derijck AA et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022. doi: 10.1016/j.mod.2005.04.009 PubMedCrossRefGoogle Scholar
  50. Wee G, Koo DB, Song BS et al (2006) Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J Biol Chem 281:6048–6057. doi: 10.1074/jbc.M511340200 PubMedCrossRefGoogle Scholar
  51. Wossidlo M, Arand J, Sebastiano V et al (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29:1877–1888. doi: 10.1038/emboj.2010.80 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Wossidlo M, Nakamura T, Lepikhov K et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241. doi: 10.1038/ncomms1240 PubMedCrossRefGoogle Scholar
  53. Xu GL, Bestor TH, Bourc’his D et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191. doi: 10.1038/46052 PubMedCrossRefGoogle Scholar
  54. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495. doi: 10.1016/j.cell.2006.03.027 PubMedCrossRefGoogle Scholar
  55. Zuccotti M, Giorgi Rossi P, Martinez A, Garagna S, Forabosco A, Redi CA (1998) Meiotic and developmental competence of mouse antral oocytes. Biol Reprod 58:700–704PubMedCrossRefGoogle Scholar
  56. Zuo X, Sheng J, Lau HT et al (2012) Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 287:2107–2118. doi: 10.1074/jbc.M111.322644 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Integrated Biology Laboratories Pathology DivisionsGraduate School of Frontier Biosciences, Osaka UniversitySuitaJapan

Personalised recommendations