Applications of Carbon Nanotubes in Oncology

  • Virginia Campello Yurgel
  • Vinicius Farias Campos
  • Tiago Collares
  • Fabiana Seixas
Chapter
Part of the Carbon Nanostructures book series (CARBON, volume 3)

Abstract

Nanooncology is based on the use of nanoscale materials to provide tools for cancer detection, prevention, diagnosis and treatment. Due to their unique physical and chemical properties, carbon nanotubes (CNTs) are among newly developed products and are currently of much interest, with a large amount of research dedicated to their novel applications. In cancer research, many advantages of CNTs in drug delivery systems, cellular Imaging, and Cancer Photothermal therapy draw attention. Their physicochemical features enable introduction of several pharmaceutically relevant entities and allow for rational design of novel candidate nanoscale constructs. Thus, a detailed understanding of recent progress in nanooncology, focusing on biomedical research exploring possible application of carbon nanotubes, is required to consider the medical applications of these materials.

Keywords

Carbon Nanotubes Human Serum Albumin Drug Delivery System Multiwalled Carbon Nanotubes Covalent Functionalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adeli, M., Mirab, N., Zabihi, F.: Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials. Nanotechnology 20, 485–603 (2009). doi: 10.1088/0957-4484/20/48/485603 CrossRefGoogle Scholar
  2. 2.
    Ajima, K., Murakami, T., Mizoguchi, Y., Tsuchida, K., Ichihashi, T., Iijima, S., Yudasaka, M.: Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2, 2057–2064 (2008). doi: 10.1021/nn800395t CrossRefGoogle Scholar
  3. 3.
    Arlt, M., Haase, D., Hampel, S., Oswald, S., Bachmatiuk, A., Klingeler, R., Schulze, R., Ritschel, M., Leonhardt, A., Fuessel, S., Buchner, B., Kraemer, K., Wirth, M.P.: Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death. Nanotechnology 21, 335101 (2010). doi: 10.1088/0957-4484/21/33/335101 CrossRefGoogle Scholar
  4. 4.
    Bai, X., Son, S.J., Zhang, S., Liu, W., Jordan, E.K., Frank, J.A., Venkatesan, T., Lee, S.B.: Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling. Nanomedicine (Lond) 3, 163–174 (2008). doi: 10.2217/17435889.3.2.163 CrossRefGoogle Scholar
  5. 5.
    Beg, S., Rizwan, M., Sheikh, A.M., Hasnain, M.S., Anwer, K., Kohli, K.: Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011). doi: 10.1111/j.2042-7158.2010.01167 CrossRefGoogle Scholar
  6. 6.
    Bhirde, A.A., Patel, V., Gavard, J., Zhang, G., Sousa, A.A., Masedunskas, A., Leapman, R.D., Weigert, R., Gutkind, J.S., Rusling, J.F.: Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3, 307–316 (2009). doi: 10.1021/nn800551s CrossRefGoogle Scholar
  7. 7.
    Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005). doi: 10.1016/j.cbpa.2005.10.005 CrossRefGoogle Scholar
  8. 8.
    Boczkowski, J., Lanone, S.: Potential uses of carbon nanotubes in the medical field: how worried should patients be? Nanomedicine (Lond) 2, 407–410 (2007). doi: 10.2217/17435889.2.4.407 CrossRefGoogle Scholar
  9. 9.
    Burke, A., Ding, X., Singh, R., Kraft, R.A., Levi-Polyachenko, N., Rylander, M.N., Szot, C., Buchanan, C., Whitney, J., Fisher, J., Hatcher, H.C., D’Agostino Jr, R., Kock, N.D., Ajayan, P.M., Carroll, D.L., Akman, S., Torti, F.M., Torti, S.V.: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U S A 106, 12897–12902 (2009). doi: 10.1073/pnas.0905195106 CrossRefGoogle Scholar
  10. 10.
    Burke, A.R., Singh, R.N., Carroll, D.L., Owen, J.D., Kock, N.D., D’Agostino Jr, R., Torti, F.M., Torti, S.V.: Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970–5978 (2011). doi: 10.1016/j.biomaterials.2011.04.059 Google Scholar
  11. 11.
    Cai, D., Mataraza, J.M., Qin, Z.H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005). doi: 10.1038/nmeth761 CrossRefGoogle Scholar
  12. 12.
    Chakravarty, P., Marches, R., Zimmerman, N.S., Swafford, A.D., Bajaj, P., Musselman, I.H., Pantano, P., Draper, R.K., Vitetta, E.S.: Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 105, 8697–8702 (2008). doi: 10.1073/pnas.0803557105 CrossRefGoogle Scholar
  13. 13.
    Cherukuri, P., Gannon, C.J., Leeuw, T.K., Schmidt, H.K., Smalley, R.E., Curley, S.A., Weisman, R.B.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. U S A 103, 18882–18886 (2006). doi: 10.1073/pnas.0609265103 CrossRefGoogle Scholar
  14. 14.
    Cheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.: DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev. 62, 633–649 (2010). doi: 10.1016/j.addr.2010.03.007 CrossRefGoogle Scholar
  15. 15.
    De la Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Smith, B.R., Ma, T.J., Oralkan, O., Cheng, Z., Chen, X., Dai, H., Khuri-Yakub, B.T., Gambhir, S.S.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008). doi: 10.1038/nnano.2008.231 CrossRefGoogle Scholar
  16. 16.
    Dhar, S., Liu, Z., Thomale, J., Dai, H., Lippard, S.J.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008). doi: 10.1021/ja803036e CrossRefGoogle Scholar
  17. 17.
    Di Crescenzo, A., Velluto, D., Hubbell, J.A., Fontana, A.: Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale 3, 925–928 (2011). doi: 10.1039/c0nr00444h CrossRefGoogle Scholar
  18. 18.
    Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J.P., Prato, M., Muller, S., Bianco, A.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano. Lett. 6, 1522–1528 (2006). doi: 10.1021/nl061160x CrossRefGoogle Scholar
  19. 19.
    Firme III, C.P., Bandaru, P.R.: Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6, 245–256 (2010). doi: 10.1016/j.nano.2009.07.003 CrossRefGoogle Scholar
  20. 20.
    Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: II drug delivery and biocompatibility issues. Nanomedicine 4, 183–200 (2008). doi: 10.1016/j.nano.2008.04.003 CrossRefGoogle Scholar
  21. 21.
    Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., Hirsch, A.: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002). doi: 10.1021/ja016954m CrossRefGoogle Scholar
  22. 22.
    Hampel, S., Kunze, D., Haase, D., Kramer, K., Rauschenbach, M., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Buchner, B.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond) 3, 175–182 (2008). doi: 10.2217/17435889.3.2.175 CrossRefGoogle Scholar
  23. 23.
    Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L., Flahaut, E., Soula, B., Hinterdorfer, P., Coley, H.M., Silva, S.R., McFadden, J.: Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4, 2615–2626 (2010). doi: 10.1021/nn100069k CrossRefGoogle Scholar
  24. 24.
    Hilder, T.A., Hill, J.M.: Modeling the loading and unloading of drugs into nanotubes. Small 5, 300–308 (2009). doi: 10.1002/smll.200800321 CrossRefGoogle Scholar
  25. 25.
    Huang, H., Yuan, Q., Shah, J.S., Misra, R.D.: A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev. (2011). doi: 10.1016/j.addr.2011.04.001 Google Scholar
  26. 26.
    Huang, H.C., Barua, S., Sharma, G., Dey, S.K., Rege, K.: Inorganic nanoparticles for cancer imaging and therapy. J Control Release (2011). doi: 10.1016/j.jconrel.2011.07.005 Google Scholar
  27. 27.
    Iancu, C., Mocan, L., Bele, C., Orza, A.I., Tabaran, F.A., Catoi, C., Stiufiuc, R., Stir, A., Matea, C., Iancu, D., Agoston-Coldea, L., Zaharie, F., Mocan, T.: Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin. Int. J. Nanomedicine 6, 129–141 (2011). doi: 10.2147/IJN.S15841 CrossRefGoogle Scholar
  28. 28.
    Jain, K.K.: Advances in the field of nanooncology. BMC Med. 8, 83 (2010). doi: 10.1186/1741-7015-8-83 CrossRefGoogle Scholar
  29. 29.
    Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D.L., Ni, Q.X., Yu, X.J.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29–35 (2010). doi: 10.1016/j.bbcan.2010.02.004 Google Scholar
  30. 30.
    Kam, N.W., Liu, Z., Dai, H.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 45, 577–581 (2006). doi: 10.1002/anie.200503389 CrossRefGoogle Scholar
  31. 31.
    Kam, N.W., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U S A 102, 11600–11605 (2005). doi: 10.1073/pnas.0502680102 CrossRefGoogle Scholar
  32. 32.
    Karmakar, A., Bratton, S.M., Dervishi, E., Ghosh, A., Mahmood, M., Xu, Y., Saeed, L.M., Mustafa, T., Casciano, D., Radominska-Pandya, A., Biris, A.S.: Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine 6, 1045–1055 (2011). doi: 10.2147/IJN.S17684 Google Scholar
  33. 33.
    Kostarelos, K., Bianco, A., Prato, M.: Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4, 627–633 (2009). doi: 10.1038/nnano.2009.241 CrossRefGoogle Scholar
  34. 34.
    Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007). doi: 10.1038/nnano.2006.209 CrossRefGoogle Scholar
  35. 35.
    Lay, C.L., Liu, H.Q., Tan, H.R., Liu, Y.: Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21, 065101 (2010). doi: 10.1088/0957-4484/21/6/065101 CrossRefGoogle Scholar
  36. 36.
    Li, R., Wu, R., Zhao, L., Wu, M., Yang, L., Zou, H.: P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4, 1399–1408 (2010). doi: 10.1021/nn9011225 CrossRefGoogle Scholar
  37. 37.
    Liang, F., Chen, B.: A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)CrossRefGoogle Scholar
  38. 38.
    Liu, X., Tao, H., Yang, K., Zhang, S., Lee, S.T., Liu, Z.: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32, 144–151 (2011). doi: 10.1016/j.biomaterials.2010.08.096 CrossRefGoogle Scholar
  39. 39.
    Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007). doi: 10.1038/nnano.2006.170 CrossRefGoogle Scholar
  40. 40.
    Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008). doi: 10.1158/0008-5472.CAN-08-1468 CrossRefGoogle Scholar
  41. 41.
    Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 105, 1410–1415 (2008). doi: 10.1073/pnas.0707654105 CrossRefGoogle Scholar
  42. 42.
    Liu, Z., Li, X., Tabakman, S.M., Jiang, K., Fan, S., Dai, H.: Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 130, 13540–13541 (2008). doi: 10.1021/ja806242t CrossRefGoogle Scholar
  43. 43.
    Liu, Z., Sun, X., Nakayama-Ratchford, N., Dai, H.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56 (2007). doi: 10.1021/nn700040t CrossRefGoogle Scholar
  44. 44.
    Liu, Z., Tabakman, S., Welsher, K., Dai, H.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2, 85–120 (2009). doi: 10.1007/s12274-009-9009-8 CrossRefGoogle Scholar
  45. 45.
    Luo, J., Solimini, N.L., Elledge, S.J.: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009). doi: 10.1016/j.cell.2009.02.024 CrossRefGoogle Scholar
  46. 46.
    Maeda, H., Bharate, G.Y., Daruwalla, J.: Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71, 409–419 (2009). doi: 10.1016/j.ejpb.2008.11.010 CrossRefGoogle Scholar
  47. 47.
    Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271–284 (2000). doi: S0168-3659(99)00248-5 CrossRefGoogle Scholar
  48. 48.
    Marches, R., Mikoryak, C., Wang, R.H., Pantano, P., Draper, R.K., Vitetta, E.S.: The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology 22, 095101 (2011). doi: 10.1088/0957-4484/22/9/095101 CrossRefGoogle Scholar
  49. 49.
    Matsumura, S., Ajima, K., Yudasaka, M., Iijima, S., Shiba, K.: Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol. Pharm. 4, 723–729 (2007). doi: 10.1021/mp070022t CrossRefGoogle Scholar
  50. 50.
    McDevitt, M.R., Chattopadhyay, D., Kappel, B.J., Jaggi, J.S., Schiffman, S.R., Antczak, C., Njardarson, J.T., Brentjens, R., Scheinberg, D.A.: Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007). doi: 10.2967/jnumed.106.039131 CrossRefGoogle Scholar
  51. 51.
    Misra, R., Acharya, S., Sahoo, S.K.: Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15, 842–850 (2010). doi: 10.1016/j.drudis.2010.08.006 CrossRefGoogle Scholar
  52. 52.
    Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y., Iijima, S.: Toxicity of single-walled carbon nanohorns. ACS Nano 2, 213–226 (2008). doi: 10.1021/nn700185t CrossRefGoogle Scholar
  53. 53.
    Mocan, L., Tabaran, F.A., Mocan, T., Bele, C., Orza, A.I., Lucan, C., Stiufiuc, R., Manaila, I., Iulia, F., Dana, I., Zaharie, F., Osian, G., Vlad, L., Iancu, C.: Selective ex vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes. Int J Nanomedicine 6, 915–928 (2011). doi: 10.2147/IJN.S19013 Google Scholar
  54. 54.
    Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., Shiba, K.: Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1, 399–405 (2004). doi: 10.1021/mp049928e CrossRefGoogle Scholar
  55. 55.
    Murugesan, S., Park, T.J., Yang, H., Mousa, S., Linhardt, R.J.: Blood compatible carbon nanotubes–nano-based neoproteoglycans. Langmuir 22, 3461–3463 (2006). doi: 10.1021/la0534468 CrossRefGoogle Scholar
  56. 56.
    Nimmagadda, A., Thurston, K., Nollert, M.U., McFetridge, P.S.: Chemical modification of SWNT alters in vitro cell-SWNT interactions. J. Biomed. Mater. Res. A 76, 614–625 (2006). doi: 10.1002/jbm.a.30577 Google Scholar
  57. 57.
    Pacurari, M., Qian, Y., Porter, D.W., Wolfarth, M., Wan, Y., Luo, D., Ding, M., Castranova, V., Guo, N.L.: Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol. Appl. Pharmacol. 255, 18–31 (2011). doi: 10.1016/j.taap.2011.05.012 CrossRefGoogle Scholar
  58. 58.
    Pantarotto, D., Partidos, C.D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961–966 (2003). doi: S107455210300214X CrossRefGoogle Scholar
  59. 59.
    Park, Y.K., Bold, B., Lee, W.K., Jeon, M.H., An, K.H., Jeong, S.Y., Shim, Y.K.: d-(+)-Galactose-conjugated single-walled carbon nanotubes as new chemical probes for electrochemical biosensors for the cancer marker galectin-3. Int. J. Mol. Sci. 12, 2946–2957 (2011). doi: 10.3390/ijms12052946 CrossRefGoogle Scholar
  60. 60.
    Pastorin, G., Wu, W., Wieckowski, S., Briand, J.P., Kostarelos, K., Prato, M., Bianco, A.: Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun. (Camb) 1182–1184 (2006). doi:  10.1039/b516309a
  61. 61.
    Prakash, S., Malhotra, M., Shao, W., Tomaro-Duchesneau, C., Abbasi, S.: Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. (2011). doi: 10.1016/j.addr.2011.06.013 Google Scholar
  62. 62.
    Pramanik, M., Swierczewska, M., Green, D., Sitharaman, B., Wang, L.V.: Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 14, 034018 (2009). doi: 10.1117/1.3147407 CrossRefGoogle Scholar
  63. 63.
    Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008). doi: 10.1021/ar700089b CrossRefGoogle Scholar
  64. 64.
    Pulskamp, K., Diabate, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007). doi: 10.1016/j.toxlet.2006.11.001 CrossRefGoogle Scholar
  65. 65.
    Raffa, V., Ciofani, G., Vittorio, O., Riggio, C., Cuschieri, A.: Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine (Lond.) 5, 89–97 (2010). doi: 10.2217/nnm.09.95 CrossRefGoogle Scholar
  66. 66.
    Ruggiero, A., Villa, C.H., Holland, J.P., Sprinkle, S.R., May, C., Lewis, J.S., Scheinberg, D.A., McDevitt, M.R.: Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomedicine 5, 783–802 (2010). doi: 10.2147/IJN.S13300 Google Scholar
  67. 67.
    Sahoo, N.G., Bao, H., Pan, Y., Pal, M., Kakran, M., Cheng, H.K., Li, L., Tan, L.P.: Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. (Camb.) 47, 5235–5237 (2011). doi: 10.1039/c1cc00075f CrossRefGoogle Scholar
  68. 68.
    Shvedova, A.A., Kisin, E.R., Porter, D., Schulte, P., Kagan, V.E., Fadeel, B., Castranova, V.: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Ther. 121, 192–204 (2009). doi: 10.1016/j.pharmthera.2008.10.009 CrossRefGoogle Scholar
  69. 69.
    Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U S A 103, 3357–3362 (2006). doi: 10.1073/pnas.0509009103 CrossRefGoogle Scholar
  70. 70.
    Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005). doi: 10.1021/ja0441561 CrossRefGoogle Scholar
  71. 71.
    Sobhani, Z., Dinarvand, R., Atyabi, F., Ghahremani, M., Adeli, M.: Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int. J. Nanomedicine 6, 705–719 (2011). doi: 10.2147/IJN.S17336 Google Scholar
  72. 72.
    Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006). doi: 10.1021/cr050569o CrossRefGoogle Scholar
  73. 73.
    Tasis, D., Tagmatarchis, N., Georgakilas, V., Prato, M.: Soluble carbon nanotubes. Chemistry 9, 4000–4008 (2003). doi: 10.1002/chem.200304800 CrossRefGoogle Scholar
  74. 74.
    Thomas, L.V., Arun, U., Remya, S., Nair, P.D.: A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. J. Mater. Sci. Mater. Med. 20(Suppl 1), S259–S269 (2009). doi: 10.1007/s10856-008-3599-7 CrossRefGoogle Scholar
  75. 75.
    Valcarcel, M., Cardenas, S., Simonet, B.M.: Role of carbon nanotubes in analytical science. Anal. Chem. 79, 4788–4797 (2007). doi: 10.1021/ac070196m CrossRefGoogle Scholar
  76. 76.
    Venturelli, E., Fabbro, C., Chaloin, O., Menard-Moyon, C., Smulski, C.R., Da, R.T., Kostarelos, K., Prato, M., Bianco, A.: Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 7, 2179–2187 (2011). doi: 10.1002/smll.201100137 CrossRefGoogle Scholar
  77. 77.
    Villa, C.H., Dao, T., Ahearn, I., Fehrenbacher, N., Casey, E., Rey, D.A., Korontsvit, T., Zakhaleva, V., Batt, C.A., Philips, M.R., Scheinberg, D.A.: Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5, 5300–5311 (2011). doi: 10.1021/nn200182x CrossRefGoogle Scholar
  78. 78.
    Vittorio, O., Raffa, V., Cuschieri, A.: Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine 5, 424–431 (2009). doi: 10.1016/j.nano.2009.02.006 CrossRefGoogle Scholar
  79. 79.
    Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004). doi: 10.1021/ja031723w CrossRefGoogle Scholar
  80. 80.
    Wang, L., Luanpitpong, S., Castranova, V., Tse, W., Lu, Y., Pongrakhananon, V., Rojanasakul, Y.: Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 11, 2796–2803 (2011). doi: 10.1021/nl2011214 CrossRefGoogle Scholar
  81. 81.
    Wang, X., Jia, G., Wang, H., Nie, H., Yan, L., Deng, X.Y., Wang, S.: Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 3025–3033 (2009)CrossRefGoogle Scholar
  82. 82.
    Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A., Webb, T.R.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004). doi: 10.1093/toxsci/kfg228 CrossRefGoogle Scholar
  83. 83.
    Welsher, K., Liu, Z., Daranciang, D., Dai, H.: Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586–590 (2008). doi: 10.1021/nl072949q CrossRefGoogle Scholar
  84. 84.
    Whitney, J.R., Sarkar, S., Zhang, J., Do, T., Young, T., Manson, M.K., Campbell, T.A., Puretzky, A.A., Rouleau, C.M., More, K.L., Geohegan, D.B., Rylander, C.G., Dorn, H.C., Rylander, M.N.: Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43, 43–51 (2011). doi: 10.1002/lsm.21025 CrossRefGoogle Scholar
  85. 85.
    Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F.: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261–1268 (2006). doi: 10.1021/nl060177c CrossRefGoogle Scholar
  86. 86.
    Wu, H., Liu, G., Wang, X., Zhang, J., Chen, Y., Shi, J., Yang, H., Hu, H., Yang, S.: Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 7, 3496–3504 (2011). doi: 10.1016/j.actbio.2011.05.031 CrossRefGoogle Scholar
  87. 87.
    Wu, W., Li, R., Bian, X., Zhu, Z., Ding, D., Li, X., Jia, Z., Jiang, X., Hu, Y.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3, 2740–2750 (2009). doi: 10.1021/nn9005686 CrossRefGoogle Scholar
  88. 88.
    Wu, Y., Phillips, J.A., Liu, H., Yang, R., Tan, W.: Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2, 2023–2028 (2008). doi: 10.1021/nn800325a CrossRefGoogle Scholar
  89. 89.
    Yang, F., Hu, J., Yang, D., Long, J., Luo, G., Jin, C., Yu, X., Xu, J., Wang, C., Ni, Q., Fu, D.: Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomedicine (Lond.) 4, 317–330 (2009). doi: 10.2217/nnm.09.5 CrossRefGoogle Scholar
  90. 90.
    Yang, F., Jin, C., Yang, D., Jiang, Y., Li, J., Di, Y., Hu, J., Wang, C., Ni, Q., Fu, D.: Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 47, 1873–1882 (2011). doi: 10.1016/j.ejca.2011.03.018 CrossRefGoogle Scholar
  91. 91.
    Zhang, H., Jiang, H., Sun, F., Wang, H., Zhao, J., Chen, B., Wangb, X.: Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes–drug supramolecular nanocomposites. Biosens. Bioelectron. 26, 3361–3366 (2011). doi: 10.1016/j.bios.2011.01.020 CrossRefGoogle Scholar
  92. 92.
    Zhang, X., Meng, L., Lu, Q., Fei, Z., Dyson, P.J.: Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30, 6041–6047 (2009). doi: 10.1016/j.biomaterials.2009.07.025 CrossRefGoogle Scholar
  93. 93.
    Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15, 428–435 (2010). doi: 10.1016/j.drudis.2010.04.005 CrossRefGoogle Scholar
  94. 94.
    Zhou, F., Xing, D., Ou, Z., Wu, B., Resasco, D.E., Chen, W.R.: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 021009 (2009). doi: 10.1117/1.3078803 CrossRefGoogle Scholar
  95. 95.
    Zhou, F., Xing, D., Wu, B., Wu, S., Ou, Z., Chen, W.R.: New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 10, 1677–1681 (2010). doi: 10.1021/nl100004m CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Virginia Campello Yurgel
    • 1
  • Vinicius Farias Campos
    • 1
  • Tiago Collares
    • 1
  • Fabiana Seixas
    • 1
  1. 1.Grupo de pesquisa em Oncologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations