Review of Field Emission from Carbon Nanotubes: Highlighting Measuring Energy Spread

  • M. H. M. O. Hamanaka
  • V. P. Mammana
  • P. J. Tatsch
Chapter
Part of the Carbon Nanostructures book series (CARBON, volume 3)

Abstract

This paper is a review of the research on field emission properties of carbon nanotubes (CNTs), the basic properties of CNTs, the main emission properties with highlighting in energy spread and the work done in applying CNTs for field emission microscopy (FEM). In this work there are explanations about the density of states (DOS) of the conduction electrons responsible for the emission; comparison of the characteristics of CNTs emission from single nanotube or films; comparison of the different types of electron sources and the introduction of CNTs electron sources applying in retarding field analyzer (RFA).

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Electron Source Energy Spread Field Emission Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.J.: Work functions and surface functional groups of multiwall carbon nanotubes. Phys Chem B. 103, 8116–8121 (1999)CrossRefGoogle Scholar
  2. 2.
    Alvarenga, J., Jarosz, P.R., Schauerman, C.M., Moses, B.T., Landi, B.J., Cress, C.D., Raffaelle, R.P.: High conductivity carbon nanotube wires from radial densification and ionic doping. Appl. Phys. Lett. 97, 182106-1–182106-3 (2010)Google Scholar
  3. 3.
    Amelinckx, S., Bernaerts, D., Zhang, X.B., Van Tendeloo, G., Van Landuyt J.: A structure model and growth mechanism for multishell carbon nanotubes. Science. 267, 1334‐1338 (1995)Google Scholar
  4. 4.
    Bonard, J.M., Maier, F., Stockli, T., Châtelain, A., De Heer, W.A., Salvetat, J.P., Forró L.: Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy. 73, 9–18 (1998)Google Scholar
  5. 5.
    Bonard, J.M., Salvetat, J.P., Stöckli, T., De Heer, W.A., Forró, L., Châtelain, A.: Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918–920 (1998b)CrossRefGoogle Scholar
  6. 6.
    Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L., Chatelain, A.: Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A69, 245–254 (1999)Google Scholar
  7. 7.
    Bonard, J.M., Weiss, N., Kind, H., Stoeckli, T., Forro, L., Kern, K., Chatelain, A.: Tuning the field emission from carbon nanotube films. Adv. Mater. 13, 184–188 (2001b)CrossRefGoogle Scholar
  8. 8.
    Bonard, J.M., Kind, H., Stockli, T., Nilsson, L.O.: Field emission from carbon nanotubes: the first five years. Solid State Electron. 45, 893–914 (2001c)CrossRefGoogle Scholar
  9. 9.
    Bonard, J.M., Dean, K.A., Coll, F.C., Klinke, C.: Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 197602 (2002b)CrossRefGoogle Scholar
  10. 10.
    Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De, A., Vita, R.: Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett. 78, 2811–2814 (1997)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Zhou, X., Deng, S.Z., Xu, N.S.: The application of carbon nanotubes in high-efficiency low power consumption field-emission luminescent tube. Ultramicroscopy 95, 153–156 (2003)CrossRefGoogle Scholar
  12. 12.
    Chernozatonskiib, L.A., Gulyaevb, Yu. V., Kosakovskajab, Z. Ja., Sinitsync, N. I., Torgashovc, G. V., Zakharchenkoc, Yu. F., Fedorovb, E. A.: Val’chukb, V. P.: Electron field emission from nanofilament carbon films. Chem. Phys. Lett. 233, 63–68 (1995)Google Scholar
  13. 13.
    Chhowalla, M., Ducati, C., Rupesinghe, N.L., Teo, K.B.K., Amaratunga, G.A.J.: Field emission from short and stubby vertically aligned carbon nanotubes. Appl. Phys. Lett. 79, 2079–2081 (2001)CrossRefGoogle Scholar
  14. 14.
    Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)CrossRefGoogle Scholar
  15. 15.
    Cooper, E.B., Manalis, S.R., Fang, H., Dai, H., Matsumoto, K., Minne, S.C., Hunt, T., Quate, C.F.: Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75, 3566–3568 (1999)CrossRefGoogle Scholar
  16. 16.
    Cui, Y., Zou, Y., Valfells, M., Reiser, M., Alter, M., Haber, I., Kishek, R.A., Bernal, S., O`Shea, P.G.: Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams. Rev. Sci. Instrum. 75, 2736–2745 (2004)CrossRefGoogle Scholar
  17. 17.
    Cumings, A., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)CrossRefGoogle Scholar
  18. 18.
    Cumings, J., Zettl, A., McCartney, M.R., Spence, J.C.H.: Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002)CrossRefGoogle Scholar
  19. 19.
    De Heer, W.A., Chatelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)CrossRefGoogle Scholar
  20. 20.
    De Jonge, N.: The brightness of carbon nanotube electron emitters. J. Appl. Phys. 95, 673–681 (2004)CrossRefGoogle Scholar
  21. 21.
    De Jonge, N., Lamy, Y., Schoots, K. and Oosterkamp, T.H.: High brightness electron beam from a multi‐walled carbon nanotube. Nature. 420, 393–395 (2002)Google Scholar
  22. 22.
    De Jonge, N., van Druten, N.J.: Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope. Ultramicroscopy 95, 85–91 (2003)CrossRefGoogle Scholar
  23. 23.
    De Jonge, N., Bonard, J.M.: Carbon nanotube electron sources and applications. Phil. Trans. R. Soc. Lond A. 362, 2239–2266 (2004)CrossRefGoogle Scholar
  24. 24.
    De Jonge, N., Allioux, M., Doytcheva, M., Kaiser, M., Teo, K.B.K., Lacerda, R.G., Milne, W.I.: Characterization of the field emission properties of individual thin carbon nanotubes. Appl. Phys. Lett. 85, 1607–1609 (2004)CrossRefGoogle Scholar
  25. 25.
    De Jonge, N., Doytcheva, M., Allioux, M., Kaiser, M., Mentick, S.A.M., Teo, K.B.K., Lacerda, R.G., Milne, W.I.: Cap closing of thin carbon nanotubes. Adv. Mater. 17, 451–455 (2005)CrossRefGoogle Scholar
  26. 26.
    De Pablo, P.J., Howell, S., Crittenden, S., Walsh, B., Graugnard, E., Reifenberger, R.: Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes. Appl. Phys. Lett. 75, 3941–3943 (1999)CrossRefGoogle Scholar
  27. 27.
    Dean, K.A., Chalamala, B.R.: Field emission microscopy of carbon nanotube caps. J. Appl. Phys. 85, 3832–3836 (1999a)CrossRefGoogle Scholar
  28. 28.
    Dean, K.A., Chalamala, B.R.: The environmental stability of field emission from singlewalled carbon nanotubes. Appl. Phys. Lett. 75, 3017–3019 (1999b)CrossRefGoogle Scholar
  29. 29.
    Dean, K.A., von Allmen, P., Chalamala, B.R.: Three behavioral states observed in field emission from single-walled carbon nanotubes. J. Vac. Sci. Technol., B 17, 1959–1968 (1999a)CrossRefGoogle Scholar
  30. 30.
    Dean, K.A., Groening, O., Kuttel, O.M., Schlapbach, L.: Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75, 2773–2775 (1999b)CrossRefGoogle Scholar
  31. 31.
    Dean, K.A., Chalamala, B.R.: Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 76, 375–377 (2000)CrossRefGoogle Scholar
  32. 32.
    Dean, K.A., Burgin, T.P., Chamala, B.R.: Evaporation of carbon nanotubes during electron field emission. Appl. Phys. Lett. 79, 1873–1875 (2001)CrossRefGoogle Scholar
  33. 33.
    Dean, K.A., Chalamala, B.R.: Experimental studies of the cap structures of single-walled carbon nanotubes. J. Vac. Sci. Technol. B 21, 868–871 (2003)CrossRefGoogle Scholar
  34. 34.
    den Engelsen, D., Li, X., Qi, Y.: Properties of a scanning field emission backlight. In: Proceedings of 13th International Display Workshops (IDW`06), Otsu, Japan, 6–8 Dec 2006Google Scholar
  35. 35.
    den Engelsen, D., Silver, J., Withnall, R., Ireland, T. G., Harris, P.G.: Does a Field Emission Backlight make Sense? In: Proceedings of the 16th International Display Workshop (IDW`09), Miyazaki, Japan, 9–11 Dec 2009Google Scholar
  36. 36.
    Dyke, W.P., Dolan, W.W.: Advances in electronics and electron physics. 8, 89–157 (1956)Google Scholar
  37. 37.
    Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514 (1999)Google Scholar
  38. 38.
    Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano. Lett. 12, 758–762 (2012)CrossRefGoogle Scholar
  39. 39.
    Fransen, M.J., van Rooy, T.L., Kruit, P.: Field emission energy distributions from individual multiwalled carbon nanotubes. Appl. Surf. Sci. 146, 312–327 (1999)CrossRefGoogle Scholar
  40. 40.
    Gadzuk, J.W., Plummer, E.W.: Field emission energy distribution (FEED). Rev. Mod. Phys. 45, 487–548 (1973)CrossRefGoogle Scholar
  41. 41.
    Gomer, R.: Field emission and field ionization. Harvard University Press, Cambridge (1961)Google Scholar
  42. 42.
    Groening, O., Kuettel, O.M., Schaller, E., Groening, P., Schlapbach, L.: Vacuum arc discharges preceding high electron field emission from carbon films. Appl. Phys. Lett. 69, 476–478 (1996)CrossRefGoogle Scholar
  43. 43.
    Groening, O., Kuettel, O.M., Emmenegger, C., Groening, P., Schlapbach, L.: Field emission properties of carbon nanotubes. J. Vac. Sci. Technol. B 18, 665–678 (2000)CrossRefGoogle Scholar
  44. 44.
    Hainfeld, J.F.: Understanding and using field emission sources. Scan. Electron Microsc. 1, 591–604 (1977)Google Scholar
  45. 45.
    Harris, P.J.F.: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century. Cambridge University press, New York (1999)CrossRefGoogle Scholar
  46. 46.
    Hata, K., Takakura, A., Saito, Y.: Field emission microscopy of adsorption and desorption of residual gas molecules on a carbon nanotube tip. Surf. Sci. 490, 296–300 (2001)CrossRefGoogle Scholar
  47. 47.
    Hawkes, P.W., Kasper, E.: Applied geometrical optics. Principles of electron optics, vol. II (1996)Google Scholar
  48. 48.
    Huang, S., Mau, A.W.H., Turney, T.W., White, P.A., Dai, L.: Patterned growth of wellaligned carbon nanotubes: A soft-lithographic approach. J. Phys. Chem. B. 104, 2193–2196 (2000)CrossRefGoogle Scholar
  49. 49.
    Iijima, S.: Helical microtubulus of graphite carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  50. 50.
    Jung, I.S., Seonghoon, L., Yoon, H.S., Sung, Y.C., Kyoung, I., Kee, S.N.: Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett. 78, 901–903 (2001)CrossRefGoogle Scholar
  51. 51.
    Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., Gruner, G.: Printable thin film super capacitors using single-walled carbon nanotubes. Nano. Lett. 9, 1872–1876 (2009)CrossRefGoogle Scholar
  52. 52.
    Khazaei, M., Dean, K.A., Farajian, A.A., Kawazoe, Y.: Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. 111, 6690–6693 (2007)CrossRefGoogle Scholar
  53. 53.
    King, P.J., Higgins, T.M., De, S., Nicoloso, N., Coleman, J.M.: Percolation Effects in Super capacitors with thin, transparent carbon nanotube electrodes. ACS Nano 6, 1732–1741 (2012)CrossRefGoogle Scholar
  54. 54.
    Kim, C., Kin, B., Lee, S.M., Jo, C., Lee, Y.H.: Eletronic structures of capped carbon nanotubes under electric fields. Phys. Rev. B. 65, 165418-1-165418-6 (2002)Google Scholar
  55. 55.
    Küttel, O.M., Gröning, O., Emmenegger, C., Schlapbach, L.: Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113–2115 (1998)CrossRefGoogle Scholar
  56. 56.
    Kuzumaki, T., Takamure, Y., Ichinose, H., Horiike, Y.: Structural change at the carbonnanotube tip by field emission. Appl. Phys. Lett. 78, 3699–3701 (2001)CrossRefGoogle Scholar
  57. 57.
    Leopold, J.G., Zik, O., Cheifetz, E., Rosenblatt, D.: Carbon nanotube-based electron gun for electron microscopy. J. Vac. Sci. Technol. A 19, 1790–1795 (2001)CrossRefGoogle Scholar
  58. 58.
    Lovall, D., Buss, M., Graugnard, E., Andres, R.P., Reifenberger, R.: Electron emission and structural characterization of rope of single-walles carbon nanotubes. Phys. Rev. B. 61, 5683–5691 (2000)CrossRefGoogle Scholar
  59. 59.
    Ma, X., Wang, E., Wuzong, Z., Jefferson, D.A., Jun, C., Shaozhi, D., Ningsheng, X., Jun, Y.: Polymerized carbon nanobells and their field-emission properties. Appl. Phys. Lett. 75, 3105–3107 (1999)CrossRefGoogle Scholar
  60. 60.
    Mann, M., El Gomati, M., Wells, T., Milne, W.I., Teo, K.B.K.: The application of carbon nanotube electron sources to the electron microscope. Proc. Of Spie. 7037, 7037P-1-7037P-6 (2008)Google Scholar
  61. 61.
    Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K.: Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76, 2071–2073 (2000)CrossRefGoogle Scholar
  62. 62.
    Nishikawa, O., Tomitori, M., Iwawaki, F.: High resolution tunneling microscopies: from FEM to STS. Surf. Sci. 266, 204–213 (1992)CrossRefGoogle Scholar
  63. 63.
    Obraztsov, A.N., Volkov, A.P., Pavlovskii, I.Y., Chuvilin, A.L., Rudina, N.A., Kuznetsov, V.L.: Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon. JETP Lett. 69, 411–417 (1999)CrossRefGoogle Scholar
  64. 64.
    Obraztsova, E.D., Bonard, J.M., Kuznetsov, V.L., Zaikovskii, V.I., Pimenov, S.M., Pozarov, A.S., Terekhov, S.V., Konov, V.I., Obraztsov, A.N., Volkov, A.S.: Structural measurements for single-wall carbon nanotubes by Raman scattering technique. Nanostruct. Mater. 12, 567–572 (1999)CrossRefGoogle Scholar
  65. 65.
    Purcell, S.T., Vincent, P., Journet, C., Binh, V.T.: Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current. Phys. Rev. Lett. 88, 105502 (2002)CrossRefGoogle Scholar
  66. 66.
    Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., Smalley, R.E.: Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)CrossRefGoogle Scholar
  67. 67.
    Rosen, R., Simendinger, W., Debbault, C., Shimoda, H., Fleming, L., Stoner, B., Zhou, O.: Application of carbon nanotubes as electrodes in gas discharge tubes. Appl. Phy. Lett. 76, 1668–1670 (2000)CrossRefGoogle Scholar
  68. 68.
    Ryhänen, T., Uusitalo, A.M., Ikhala, O., Kärkkäinen, A.: New Technology for Flat Panel Displays. In Nanotechnologies for Future Mobile Devices. Cambridge University press, New York (2010). 221Google Scholar
  69. 69.
    Saito, R., Fujita, M., Dresselhaus G., Dresselhaus, M. S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)Google Scholar
  70. 70.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)CrossRefGoogle Scholar
  71. 71.
    Saito, Y., Uemura, S.: Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169–182 (2000)CrossRefGoogle Scholar
  72. 72.
    Saito, Y., Hata, K., Murata, T.: Field emission patterns originating from pentagons at the tip of a carbon nanotube. Jpn. J. Appl. Phys. 39, L271–L272 (2000)CrossRefGoogle Scholar
  73. 73.
    Semet, V., Binh, V.T., Vincent, P., Guillot, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Legagneux, P., Pribat, D.: Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl. Phys. Lett. 81, 343–345 (2002)CrossRefGoogle Scholar
  74. 74.
    Sinha, N., Ma, J., Yeow, J.T.W.: Carbon Nanotube-based Sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006)CrossRefGoogle Scholar
  75. 75.
    Spindt, C.A.: A thin film field emission cathode. J. Appl. Phys. 39, 3504–3505 (1968)CrossRefGoogle Scholar
  76. 76.
    Sugie, H., Tanemure, M., Filip, V., Iwata, K., Takahashi, K., Okuyama, F.: Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)CrossRefGoogle Scholar
  77. 77.
    Swanson, L.W., Schwind, G.A.: A review of the ZrO/W Schottky cathode”. In Handbookof charged particle optics (ed. J. Orloff). 77–102. CRC Press, Boca Raton, (1997)Google Scholar
  78. 78.
    Takakura, A., Hata, K., Saito, Y., Matsuda, K., Kona, T., Oshima, C.: Energy distributions of field emitted electrons from a multi-wall carbon nanotube. Ultramicroscopy 95, 139–143 (2003)CrossRefGoogle Scholar
  79. 79.
    Teo, K.: Carbon nanotube electron source technology. JOM 59, 29–32 (2007)CrossRefGoogle Scholar
  80. 80.
    Van Veen, A.H.V., Hagen, C.W., Barth, J.E., Kruit, P.: Reduced brightness of the Zr/W Schottky electron emitter. J. Vac. Sci. Technol. B 19, 2038–2044 (2001)CrossRefGoogle Scholar
  81. 81.
    Wang, Z.L., Poncharal, P., de Heer, W.A.: In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80, 856–858 (2002)CrossRefGoogle Scholar
  82. 82.
    Wei, Y.Y., Dean, K.A., Coll, B.F., Jaskie, J.E.: Stability of carbon nanotubes under electric field studied by scanning electron microscopy. Appl. Phys. Lett. 79, 4527–4529 (2001)CrossRefGoogle Scholar
  83. 83.
    Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)CrossRefGoogle Scholar
  84. 84.
    Wong, S.S., Joselevich, E., Woolley, A.T., Li, C.C., Lieber, C.M.: Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature 394, 52–55 (1998)CrossRefGoogle Scholar
  85. 85.
    Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, B.D., Hebard, A.F., Rinzler, A.G.: Transparent, conductive carbon nanotube films. Sci. 305, 1273–1276 (2004)CrossRefGoogle Scholar
  86. 86.
    Yaguchi, T., Sato, T., Kamino, T., Taniguchi, Y., Motomiya, K., Tohji, K., Kasuya, A.: A method for characterizing carbon nanotubes. J. Electron Microsc. 50, 321–324 (2001)CrossRefGoogle Scholar
  87. 87.
    Yue, G.Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J.P., Zhou, O.: Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81, 355–357 (2002)CrossRefGoogle Scholar
  88. 88.
    Yamamoto, S., Watanabe, I., Sasaki, S., Yaguchi, T.: Absolute work function measurements with the retarding potential method utilizing a field emission electron source. Surf. Sci. 266, 100–106 (1992)CrossRefGoogle Scholar
  89. 89.
    Yu, M. F., Lourie, O., Dyer M.J., Moloni, K., Kelly, T.F., Ruo, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287, 637–640 (2000)Google Scholar
  90. 90.
    Xu, D., Guo, G., Gui, L., Tang, Y., Shi, Z., Jin, Z., Gu, Z., Liu, W., Li, X., Zhang, G.: Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett. 75, 481–483 (1999)CrossRefGoogle Scholar
  91. 91.
    Xu, N.S., Huq, S.E.: Novel cold cathode materials and applications. Mater. Sci. Eng. R 48, 47–189 (2005)CrossRefGoogle Scholar
  92. 92.
    Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M.E., Zhou, C.: Transparent, conductive, and flexible Carbon nanotube films and their application in Organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006)CrossRefGoogle Scholar
  93. 93.
    Zhang, T., Mubeen, S., Myung, N.V., Deshusses, M.A.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 1–14 (2008)Google Scholar
  94. 94.
    Zhirnov, V.V., Lizzu- Rinne, C., Wojak, G.J., Sanwald, R.C., Hren, J.J.: Standardization of field emission measurements. J. Vac. Technol. B 19, 87–93 (2001)CrossRefGoogle Scholar
  95. 95.
    Zhao, Y., Wei, J., Vajtai, R., Ajayan, P.M., Barrera, E.V.: Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals“.Sci. Rep. 83, 1–5 (2011)Google Scholar
  96. 96.
    Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P., Glarum, S.H.: Defects in carbon nanostructures. Science 263, 1744 (1994)CrossRefGoogle Scholar
  97. 97.
    Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S.: Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 1999(75), 873–875 (1999)CrossRefGoogle Scholar
  98. 98.
    Zhu, W.: Vacuum Micro-Electronics. Wiley, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. H. M. O. Hamanaka
    • 1
    • 2
  • V. P. Mammana
    • 1
  • P. J. Tatsch
    • 2
  1. 1.Centro de Tecnologia da Informação Renato Archer – CTICampinas-SPBrazil
  2. 2.Universidade Estadual de Campinas – UNICAMPCampinas-SPBrazil

Personalised recommendations