Advertisement

Learning the Structure of Probabilistic Logic Programs

  • Elena Bellodi
  • Fabrizio Riguzzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7207)

Abstract

There is a growing interest in the field of Probabilistic Inductive Logic Programming, which uses languages that integrate logic programming and probability. Many of these languages are based on the distribution semantics and recently various authors have proposed systems for learning the parameters (PRISM, LeProbLog, LFI-ProbLog and EMBLEM) or both the structure and the parameters (SEM-CP-logic) of these languages. EMBLEM for example uses an Expectation Maximization approach in which the expectations are computed on Binary Decision Diagrams. In this paper we present the algorithm SLIPCASE for “Structure LearnIng of ProbabilistiC logic progrAmS with Em over bdds”. It performs a beam search in the space of the language of Logic Programs with Annotated Disjunctions (LPAD) using the log likelihood of the data as the guiding heuristics. To estimate the log likelihood of theory refinements it performs a limited number of Expectation Maximization iterations of EMBLEM. SLIPCASE has been tested on three real world datasets and compared with SEM-CP-logic and Learning using Structural Motifs, an algorithm for Markov Logic Networks. The results show that SLIPCASE achieves higher areas under the precision-recall and ROC curves and is more scalable.

Keywords

Probabilistic Inductive Logic Programming Statistical Relational Learning Structure Learning Distribution Semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., Selbig, J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional data. J. Comput. Biol. 12(6), 584–598 (2005)CrossRefGoogle Scholar
  2. 2.
    Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intel. Data Anal. 16(6) (2012)Google Scholar
  3. 3.
    Biba, M., Ferilli, S., Esposito, F.: Discriminative Structure Learning of Markov Logic Networks. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 59–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Craven, M., Slattery, S.: Relational learning with statistical predicate invention: Better models for hypertext. Mach. Learn. 43(1/2), 97–119 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dantsin, E.: Probabilistic Logic Programs and their Semantics. In: Voronkov, A. (ed.) RCLP 1990 and RCLP 1991. LNCS, vol. 592, pp. 152–164. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: International Conference on Machine Learning. ACM International Conference Proceeding Series, vol. 148, pp. 233–240. ACM (2006)Google Scholar
  7. 7.
    De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learning. In: NIPS Workshop on Probabilistic Programming: Universal Languages, Systems and Applications (2008)Google Scholar
  8. 8.
    De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its application in link discovery. In: International Joint Conference on Artificial Intelligence, pp. 2462–2467. AAAI Press (2007)Google Scholar
  9. 9.
    Fawcett, T.: An introduction to roc analysis. Patt. Recog. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Friedman, N.: The Bayesian structural EM algorithm. In: Conference on Uncertainty in Artificial Intelligence, pp. 129–138. Morgan Kaufmann (1998)Google Scholar
  11. 11.
    Fuhr, N.: Probabilistic datalog: Implementing logical information retrieval for advanced applications. J. Am. Soc. Inf. Sci. 51(2), 95–110 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter Learning in Probabilistic Databases: A Least Squares Approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Gutmann, B., Kimmig, A., Kersting, K., Raedt, L.: Parameter estimation in ProbLog from annotated queries. Tech. Rep. CW 583, KU Leuven (2010)Google Scholar
  14. 14.
    Gutmann, B., Thon, I., De Raedt, L.: Learning the Parameters of Probabilistic Logic Programs from Interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6911, pp. 581–596. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the em algorithm by bdds. In: Late Breaking Papers of the International Conference on Inductive Logic Programming, pp. 44–49 (2008)Google Scholar
  16. 16.
    Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: International Conference on Machine Learning, pp. 441–448. ACM (2005)Google Scholar
  17. 17.
    Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph lifting. In: International Conference on Machine Learning, p. 64. ACM (2009)Google Scholar
  18. 18.
    Kok, S., Domingos, P.: Learning markov logic networks using structural motifs. In: International Conference on Machine Learning, pp. 551–558. Omni Press (2010)Google Scholar
  19. 19.
    Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leveraging Bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network structure. In: International Conference on Machine Learning, pp. 625–632. ACM (2007)Google Scholar
  21. 21.
    Poole, D.: Logic programming, abduction and probability - a top-down anytime algorithm for estimating prior and posterior probabilities. New Gener. Comput. 11(3-4), 377–400 (1993)zbMATHCrossRefGoogle Scholar
  22. 22.
    Poole, D.: The Independent Choice Logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1-2), 7–56 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing probabilistic prolog programs. Mach. Learn. 70(2-3), 151–168 (2008)CrossRefGoogle Scholar
  24. 24.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: International Conference on Logic Programming, pp. 715–729. MIT Press (1995)Google Scholar
  25. 25.
    Thayse, A., Davio, M., Deschamps, J.P.: Optimization of multivalued decision algorithms. In: International Symposium on Multiple-Valued Logic, pp. 171–178. IEEE Computer Society Press (1978)Google Scholar
  26. 26.
    Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of causal probabilistic events and its relation to logic programming. The. Pra. Log. Program. 9(3), 245–308 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Tech. Rep. CW386, KU Leuven (2003)Google Scholar
  28. 28.
    Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs with Annotated Disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elena Bellodi
    • 1
  • Fabrizio Riguzzi
    • 1
  1. 1.ENDIFUniversity of FerraraFerraraItaly

Personalised recommendations