A Comparative Analysis of Public Ligand Databases Based on Molecular Descriptors

  • Ana T. Winck
  • Christian V. Quevedo
  • Karina S. Machado
  • Osmar Norberto de Souza
  • Duncan D. Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7409)


A wide range of public ligand databases provides currently dozens of millions ligands to users. Consequently, exaustive in silico virtual screening testing with such a high volume of data is particularly expensive. Because of this, there is a demand for the development of new solutions that can reduce the number of testing ligands on their target receptors. Nevertheless, there is no method to reduce effectively that high number in a manageable amount, thus becoming this issue a major challenge of rational drug design. This article presents a comparative analysis among the main public ligand databases by measuring the quality and variations in the values of the molecular descriptors available in each one. It aims to help the development of new methods based on criteria that reduce the set of promising ligands to be tested.


public ligand databases molecular descriptors virtual screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyne, P.D.: Structure-based virtual screening: an overview. Drug Discovery Today 7, 1047–1055 (2002)CrossRefGoogle Scholar
  2. 2.
    Caskey, C.T.: The drug development crisis: efficiency and safety. Annual Review of Medicine 58, 1–16 (2007)CrossRefGoogle Scholar
  3. 3.
    Kapetanovic, I.: Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chemical Biology Interaction 171, 1047–1055 (2008)Google Scholar
  4. 4.
    Irwin, J.J., Shoichet, B.K.: ZINC – a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling 45(1), 177–182 (2005)CrossRefGoogle Scholar
  5. 5.
    Cochrane, G.R., Galperin, M.Y.: The 2010 nucleic acids research database issue and online database collection: a community of data resources. Nucleic Acids Research 38, D1–D4 (2009)Google Scholar
  6. 6.
    Allen, F.H.: The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Serie B 58(3), 380–388 (2002)CrossRefGoogle Scholar
  7. 7.
    Hansch, C., Leo, A.: Exploring QSAR: fundamentals and applications in chemistry and biology. ACS, Washington (1995)Google Scholar
  8. 8.
    Seiler, K.P., George, G.A., Happ, M.P., Bodycombe, N.E., Carrinski, H.A., Norton, S., Brudz, S., Sullivan, J.P., Muhlich, J., Serrano, M., Ferraiolo, P., Tolliday, N.J., Schreiber, S.L., Clemons, P.A.: ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Research 36, D351–D359 (2008)Google Scholar
  9. 9.
    Chen, J.H., Linstead, E., Swamidass, S.J., Wang, D., Baldi, P.: ChemDB update: full-text search and virtual chemical space. Bioinformatics 23(17), 2348–2351 (2007)CrossRefGoogle Scholar
  10. 10.
    Chen, J.H., Swamidass, S.J., Dou, Y., Bruand, J., Baldi, P.: ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21(22), 4133–4139 (2005)CrossRefGoogle Scholar
  11. 11.
    Masciocchi, J., Frau, G., Fanton, M., Sturlese, M., Floris, M., Pireddu, L., Piergiorgio Palla, P., Cedrati, F., Rodriguez-Tomé, P., Moro, S.: MMsINC: a large-scale chemoinformatics database. Nucleic Acids Research 37, D284–D290 (2009)Google Scholar
  12. 12.
    Ihlenfeldt, W.-D., Voigt, J.H., Bienfait, B., Oellien, F., Nicklaus, M.C.: Enhanced CACTVS Browser of the Open NCI Database. Journal of Chemical Information and Modeling 42, 46–57 (2002)CrossRefGoogle Scholar
  13. 13.
    Austin, C.P., Brady, L.S., Insel, T.R., Collins, F.S.: Molecular biology: NIH Molecular Libraries Initiative. Science 306(5699), 1138–1139 (2004)CrossRefGoogle Scholar
  14. 14.
    Middlebrook, G.: Sterilization of the tubercle bacili by isonicotinic acid hidrazide and the incidence of variants resistant to the drug in vitro. American Review of Tuberculosis 65, 765–767 (1952)Google Scholar
  15. 15.
    Kuo, M.R., Morbidoni, H.R., Alland, D., Sneddon, S.F., Gourlie, B.B., Staveski, M.M., Leonard, M., Gregory, J.S., Janjigian, A.D., Yee, C., Musser, J.M., Kreiswirth, B., Iwamoto, H., Perozzo, R., Jacobs, W.R., Sacchettini, J.C., Fidock, D.A.: Targeting Tuberculosis and Malaria through Inhibition of Enoyl Reductase: Compound Activity and Structural Data. Journal of Biological Chemistry 278, 20851–20859 (2003)CrossRefGoogle Scholar
  16. 16.
    Baulard, A.R., Betts, J.C., Engohang-Ndong, J., Quan, S., McAdam, R.A., Brennan, P.J., Locht, C., Besra, G.S.: Activation of the pro-drug ethionamide is regulated in mycobacteria. Journal of Biolological Chemistry 275, 28326–28331 (2000)Google Scholar
  17. 17.
    Dessen, A., Quémard, A., Blanchard, J.S., Jacobs Jr., W.R., Sacchettini, J.C.: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267, 1638–1641 (1995)CrossRefGoogle Scholar
  18. 18.
    Schroeder, E.K., Norberto de Souza, O., Santos, D.S., Blanchard, J.S., Basso, L.A.: Drugs that inhibit mycolic acids biosynthesis in Mycobacterium tuberculosis. Current Pharmaceutical Biotechnology 3, 197–225 (2002)CrossRefGoogle Scholar
  19. 19.
    Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K.S., Wilson, T., Collins, D., de Lisle, G., Jacobs Jr., W.R.: InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994)CrossRefGoogle Scholar
  20. 20.
    Machado, K.S., Schroeder, E.K., Ruiz, D.D., Wink, A., Norberto de Souza, O.: Extracting Information from Flexible Receptor-Flexible Ligand Docking Experiments. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 104–114. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Winck, A.T., Machado, K.S., Norberto-de-Souza, O., Ruiz, D.D.D.: FReDD: Supporting Mining Strategies through a Flexible-Receptor Docking Database. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) BSB 2009. LNCS (LNBI), vol. 5676, pp. 143–146. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Machado, K.S., Winck, A.T., Ruiz, D.D., Norberto de Souza, O.: Discretization of Flexible-Receptor Docking Data. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds.) BSB 2010. LNCS (LNBI), vol. 6268, pp. 75–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Machado, K.S., Winck, A.T., Ruiz, D.D., Norberto de Souza, O.: Mining flexible-receptor docking experiments to select promising protein receptor snapshots. BMC Genomics 11, 1–13 (2010)CrossRefGoogle Scholar
  24. 24.
    Machado, K.S., Winck, A.T., Ruiz, D.D., Norberto de Souza, O.: Mining flexible-receptor docking data. WIREs DMKD 1, 532–541 (2011)Google Scholar
  25. 25.
    Machado, K.S., Schroeder, E.K., Ruiz, D.D., Cohen, E.M.L., Norberto de Souza, O.: FReDoWS: a method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection. BMC Genomics 12, S6 (2011)Google Scholar
  26. 26.
    Portugal, J.: Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity. BMC Pharmacol. 9, 11 (2009)CrossRefGoogle Scholar
  27. 27.
    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors, 668 p. Wiley-VCH, Weinheim (2000)CrossRefGoogle Scholar
  28. 28.
    Charifson, P.S., Walters, W.P.: Filtering databases and chemical libraries. Journal of Computer-Aided Molecular Design 16, 311–323 (2002)CrossRefGoogle Scholar
  29. 29.
    Wishart, D.S., et al.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research 34, D668–D672 (2006)Google Scholar
  30. 30.
    OpenEye. OpenEye Scientific Software (February 2012), http://www.eyesopen.com/
  31. 31.
    Mauri, A., Consonni, V., Pavan, M., Todeschini, R.: DRAGON software: an easy approach to molecular descriptor calculations. MATCH 56, 237–248 (2006)MATHGoogle Scholar
  32. 32.
    Talete srl. Dragon for Windows version 5.5 (January 2011), http://www.talete.mi.it/
  33. 33.
    Teague, S.J., Davis, A.M., Leeson, P.D., Oprea, T.: The Design of Leadlike Combinatorial Libraries. Angewandte Chemie International Edition 38(24), 3743–3748 (1999)CrossRefGoogle Scholar
  34. 34.
    Carr, R.A.E., Congreve, M., Murray, C.W., Rees, D.C.: Fragment-based lead discovery: leads by design. Drug Discovery Today 10(14), 987–992 (2005)CrossRefGoogle Scholar
  35. 35.
    Lipinski, C.A.: Drug-like properties and the causes of poor solubility and poor permeability. Journal Pharmacological Toxicological Methods 44(1), 235–249 (2000)CrossRefGoogle Scholar
  36. 36.
    Irwin, J.J.: Using ZINC to acquire a virtual screening library. Current Protocols on Bioinformatics 22(14), 14.6.1–14.6.23 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ana T. Winck
    • 1
  • Christian V. Quevedo
    • 1
  • Karina S. Machado
    • 2
  • Osmar Norberto de Souza
    • 1
  • Duncan D. Ruiz
    • 1
  1. 1.GPIN-LABIO, PPGCCPontificia Universidade Catolica do Rio Grande do SulPorto AlegreBrazil
  2. 2.C3, Centro de Ciencias ComputacionaisUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations