MAS: Qualitative and Quantitative Reasoning

  • Ammar Mohammed
  • Ulrich Furbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7217)


In a former work, we have presented/implemented a framework for modeling and verifying multi-agent systems, using hybrid automata. To specify properties of those systems, one needs a specification language that brings, at the same level of specification, both the qualitative and quantitative requirements. For this aim, there have been proposed several temporal logics with either event or state based approach. Both approaches have their pros and cons which should not be played off against each other. This paper contributes to present a variant of temporal logics which combines the expressiveness of both approaches. Using this proposed logic, we are able reason about many properties in a concise and intuitive manner. In particular, we concentrate on those types of properties that can be verified using reachability analysis. Hence these properties can be verified directly within our implemented framework.


Temporal Logic Multiagent System Parallel Composition Atomic Proposition Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.: Logics and Models of Real Time: A Survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.: A really temporal logic. Journal of the ACM (JACM) 41(1), 203 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Transactions on Software Engineering 22(3), 181–201 (1996)CrossRefGoogle Scholar
  7. 7.
    Ammar, A.M.: Hybrid Multi-agent Systems: Modeling, Specification and Verification. Doctoral dessertation, Department of Computer Science, University of Koblenz-landau (2010)Google Scholar
  8. 8.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artificial Intelligence 116(1-2), 123–191 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellini, P., Mattolini, R., Nesi, P.: Temporal logics for real-time system specification. ACM Comput. Surv. 32(1), 12–42 (2000)CrossRefGoogle Scholar
  10. 10.
    Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Informatica 20(3), 207–226 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Uppaal—a tool suite for automatic verification of real-time systems. In: Proceedings of the DIMACS/SYCON Workshop on Hybrid Systems III: Verification and Control, pp. 232–243. Springer-Verlag New York, Inc., Secaucus (1996)Google Scholar
  12. 12.
    Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software verification with states, events, and deadlocks. Formal Aspects of Computing 17, 461–483 (2005), 10.1007/s00165-005-0071-zCrossRefzbMATHGoogle Scholar
  13. 13.
    Egerstedt, M.: Behavior Based Robotics Using Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 103–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    El Fallah-Seghrouchni, A., Degirmenciyan-Cartault, I., Marc, F.: Framework for Multi-agent Planning Based on Hybrid Automata. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 226–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Syst. 4(4), 331–352 (1992)CrossRefGoogle Scholar
  16. 16.
    Furbach, U., Murray, J., Schmidsberger, F., Stolzenburg, F.: Hybrid Multiagent Systems with Timed Synchronization – Specification and Model Checking. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 205–220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal logic. In: Proceedings of Fifth Annual IEEE Symposium on Logic in Computer Science, Philadelphia, Pennsylvania, USA, June 4-7, pp. 402–413. IEEE Computer Society (1990)Google Scholar
  19. 19.
    Henzinger, T.: The theory of hybrid automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science, New Brunswick, NJ, pp. 278–292. IEEE Computer Society Press (1996)Google Scholar
  20. 20.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A User Guide to HyTech. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata? Journal of Computer and System Sciences 57(1), 94–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A Model Checker for Hybrid Systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with temporally extended goals. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Richland, SC, vol. 1, pp. 137–144. International Foundation for Autonomous Agents and Multiagent Systems (2009)Google Scholar
  24. 24.
    Hutzler, G., Klaudel, H., Wang, D.Y.: Towards Timed Automata and Multi-agent Systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 161–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Kindler, E., Vesper, T.: ESTL: A Temporal Logic for Events and States. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  27. 27.
    Mohammed, A., Furbach, U.: Modeling multi-agent logistic process system using hybrid automata. In: Ultes-Nitsche, U., Moldt, D., Augusto, J.C. (eds.) Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, MSVVEIS 2008, Barcelona, Spain, pp. 141–149. INSTICC Press (2008); Held in conjunction with 10th International Conference on Enterprise Information Systems (ICEIS 2008)Google Scholar
  28. 28.
    Mohammed, A., Furbach, U.: Multi-Agent Systems: Modeling and Verification Using Hybrid Automata. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS (LNAI), vol. 5919, pp. 49–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)zbMATHGoogle Scholar
  30. 30.
    Ostroff, J., Wonham, W.: A framework for real-time discrete event control. IEEE Transactions on Automatic Control 35(4), 386–397 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Platzer, A.: Differential Logic for Reasoning About Hybrid Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 746–749. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Platzer, A.: A Temporal Dynamic Logic for Verifying Hybrid System Invariants. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science 1977, pp. 46–57 (1977)Google Scholar
  34. 34.
    Pnueli, A., Harel, E.: Applications of Temporal Logic to the Specification of Real-Time Systems. In: Joseph, M. (ed.) FTRTFT 1988. LNCS, vol. 331, pp. 84–98. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  35. 35.
    Schwarz, C., Mohammed, A., Stolzenburg, F.: A tool environment for specifying and verifying multi-agent systems. In: Filipe, J., Fred, A., Sharp, B. (eds.) Proceedings of the 2nd International Conference on Agents and Artificial Intelligence, vol. 2, pp. 323–326. INSTICC Press (2010)Google Scholar
  36. 36.
    Van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and language. Elsevier (1997)Google Scholar
  37. 37.
    Yovine, S.: Kronos: A verification tool for real-time systems. International Journal on Software Tools for Technology Transfer (STTT) 1(1), 123–133 (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ammar Mohammed
    • 1
  • Ulrich Furbach
    • 2
  1. 1.Department of Computer and Information SciencesISSR, Cairo UniversityEgypt
  2. 2.Artificial Intelligence Research GroupUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations