Compression Functions Using a Dedicated Blockcipher for Lightweight Hashing

  • Shoichi Hirose
  • Hidenori Kuwakado
  • Hirotaka Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7259)

Abstract

This article presents a model of compression functions using a blockcipher for lightweight hashing on memory-constrained devices. The novelty of the proposed model is that the key length of the underlying blockcipher is half of its block length, which enables the reduction of the size of the internal state without sacrificing the security. Security of iterated hash functions composed of compression functions in the model is also discussed. First, their collision resistance and preimage resistance are quantified in the ideal cipher model. Then, a keyed hashing mode is defined, and its security as a pseudorandom function is reduced to the security of the underlying blockcipher as a pseudorandom permutation. The analysis supports the security of Lesamnta-LW, which is a lightweight hash function proposed in ICISC 2010. Finally, preimage resistance is quantified assuming a computationally secure blockcipher.

Keywords

hash function blockcipher collision resistance preimage resistance pseudorandom function pseudorandom permutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The cascade construction and its concrete security. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 514–523 (1996)Google Scholar
  3. 3.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop (2007)Google Scholar
  4. 4.
    Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, Verbauwhede [14], pp. 450–466Google Scholar
  7. 7.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A Lightweight 256-Bit Hash Function for Hardware and Low-End Devices: Lesamnta-LW. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 151–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Hirose, S., Kuwakado, H.: Efficient pseudorandom-function modes of a block-cipher-based hash function. IEICE Transactions on Fundamentals E92-A(10), 2447–2453 (2009)CrossRefGoogle Scholar
  11. 11.
    Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damgård Scheme with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)Google Scholar
  14. 14.
    Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer, Heidelberg (2007)MATHGoogle Scholar
  15. 15.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Küçük, Ö., Preneel, B.: MAME: A compression function with reduced hardware requirements. In: Paillier, Verbauwhede [14], pp. 148–165Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shoichi Hirose
    • 1
  • Hidenori Kuwakado
    • 2
  • Hirotaka Yoshida
    • 3
    • 4
  1. 1.Graduate School of EngineeringUniversity of FukuiJapan
  2. 2.Graduate School of EngineeringKobe UniversityJapan
  3. 3.Yokohama Research LaboratoryHitachi, Ltd.Japan
  4. 4.Department of Electrical Engineering ESAT/SCD-COSICKatholieke Universiteit LeuvenBelgium

Personalised recommendations