Location privacy research has received wide attention in the past few years owing to the growing popularity of location-based applications, and the skepticism thereof on the collection of location information. A large section of this research is directed towards mechanisms based on location obfuscation. The primary motivation for this engagement comes from the relatively well researched area of database privacy. Researchers in this sibling domain have indicated multiple times that any notion of privacy is incomplete without explicit statements on the capabilities of an attacker. The question we ask in the context of location privacy is whether the attacker we are fighting against exists or not. In this paper, we provide a classification of attacker knowledge, and explore what implication does a certain form of knowledge has on location privacy. We argue that the use of cloaking regions can adversely impact the preservation of privacy in the presence of approximate location knowledge, and demonstrate how perturbation based mechanisms can instead be useful.


location privacy differential privacy query approximations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-Domain k-Anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60 (2005)Google Scholar
  2. 2.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: Proceedings of the 22nd International Conference in Data Engineering, p. 25 (2006)Google Scholar
  3. 3.
    Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  4. 4.
    Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial and Temporal Cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications, and Services, pp. 31–42 (2003)Google Scholar
  5. 5.
    Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18 (2008)CrossRefGoogle Scholar
  6. 6.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing Location-Based Identity Inference in Anonymous Spatial Queries. IEEE Transactions on Knowledge and Data Engineering 19(12), 1719–1733 (2007)CrossRefGoogle Scholar
  7. 7.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: ℓ–Diversity: Privacy Beyond k–Anonymity. In: Proceedings of the 22nd International Conference on Data Engineering, p. 24 (2006)Google Scholar
  8. 8.
    Li, N., Li, T., Venkatasubramanian, S.: t–Closeness: Privacy Beyond k–Anonymity and ℓ–Diversity. In: Proceedings of the 23rd International Conference on Data Engineering, pp. 106–115 (2007)Google Scholar
  9. 9.
    Wong, R.C., Fu, A.W., Wang, K., Pei, J.: Minimality Attack in Privacy Preserving Data Publishing. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 543–554 (2007)Google Scholar
  10. 10.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting Anonymous Location Queries in Mobile Environments with Privacy Grid. In: Proceedings of the 17th International World Wide Web Conference, pp. 237–246 (2008)Google Scholar
  12. 12.
    Xue, M., Kalnis, P., Pung, H.K.: Location Diversity: Enhanced Privacy Protection in Location Based Services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Ghinita, G., Zhao, K., Papadias, D., Kalnis, P.: A Reciprocal Framework for Spatial k-Anonymity. Journal of Information Systems 35(3), 299–314 (2010)CrossRefGoogle Scholar
  14. 14.
    Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Liu, X., Schrack, G.: Encoding and Decoding the Hilbert Order. Software-Practice and Experience 26(12), 1335–1346 (1996)CrossRefGoogle Scholar
  16. 16.
    Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique Using Dummies for Location-Based Services. In: Proceedings of the IEEE International Conference on Pervasive Services, pp. 88–97 (2005)Google Scholar
  17. 17.
    Duckham, M., Kulik, L.: A Formal Model of Obfuscation and Negotiation for Location Privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving User Location Privacy in Mobile Data Management Infrastructures. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query Performance, and Query Accuracy in Mobile Services. In: Proceedings of the 24th International Conference on Data Engineering, pp. 366–375 (2008)Google Scholar
  20. 20.
    Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: Anonymous Location-Based Queries in Distributed Mobile Systems. In: Proceedings of the 16th International Conference on World Wide Web, pp. 371–380 (2007)Google Scholar
  21. 21.
    Mokbel, M.F., Chow, C., Aref, W.G.: The New Casper: Query Processing for Location Services Without Compromising Privacy. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 763–774 (2006)Google Scholar
  22. 22.
    Lee, K.C.K., Lee, W.C., Leong, H.V., Zheng, B.: OPAQUE: Protecting Path Privacy in Directions Search. In: Proceedings of the 25th International Conference on Data Engineering, pp. 1271–1274 (2009)Google Scholar
  23. 23.
    Xu, T., Cai, Y.: Feeling-Based Location Privacy Protection for Location-Based Services. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 348–357 (2009)Google Scholar
  24. 24.
    Marconi, L., Di Pietro, R., Crispo, B., Conti, M.: Time Warp: How Time Affects Privacy in LBSs. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 325–339. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying Location Privacy. In: Proceedings of the 32nd IEEE Symposium on Security and Privacy, pp. 247–262 (2011)Google Scholar
  26. 26.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order Preserving Encryption for Numeric Data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 563–574 (2004)Google Scholar
  27. 27.
    Wong, W.K., Cheung, D.W., Kao, B., Mamouslis, N.: Secure kNN Computation on Encrypted Databases. In: Proceedings of the 35th SIGMOD International Conference on Management of Data, pp. 139–152 (2009)Google Scholar
  28. 28.
    Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location Privacy: Going beyond k-Anonymity, Cloaking and Anonymizers. Journal of Knowledge and Information Systems 26(3), 435–465 (2011)CrossRefGoogle Scholar
  29. 29.
    Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest Neighbor Search with Strong Location Privacy. VLDB Endowment 3(1-2), 619–629 (2010)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Rinku Dewri
    • 1
  1. 1.Department of Computer ScienceUniversity of DenverDenverUSA

Personalised recommendations