Multiple Criteria Decision Analysis with Game-Theoretic Rough Sets

  • Nouman Azam
  • JingTao Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7414)

Abstract

Multiple criteria decision analysis plays an important role in many real life problems found in business, economics, management, governmental and political disputes. The game-theoretic rough set model (GTRS) is a recent extension to rough set theory for intelligent decision making observed with game-theoretic formulation. In this article, we extend GTRS for formulating and analyzing multiple criteria decision making problems in rough sets. Basic concepts of the model are defined, reviewed and analyzed in the context of multiple criteria. Applicability of GTRS is demonstrated by considering different examples, including multiple criteria effective classification, rule mining and feature selection.

Keywords

Feature Selection Multiple Criterion Rule Mining Multiple Criterion Decision Multiple Criterion Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azam, N., Yao, J.T.: Classifying Attributes with Game-Theoretic Rough Sets. In: Watada, J., Watanabe, T., Phillips-Wren, G., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies. SIST, vol. 15, pp. 175–184. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Azam, N., Yao, J.T.: Game-theoretic Rough Sets for Feature Selection. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. ISRL, vol. 43, pp. 61–78. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Deng, X.F., Yao, Y.Y.: An Information-Theoretic Interpretation of Thresholds in Probabilistic Rough Sets. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 369–378. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Slowinski, R.: Parameterized rough set model using rough membership and bayesian confirmation measures. International Journal of Approximate Reasoning 49(2), 285–300 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Herbert, J.P., Yao, J.T.: Analysis of Data-Driven Parameters in Game-Theoretic Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 447–456. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae 108(3-4), 267–286 (2011)MathSciNetMATHGoogle Scholar
  7. 7.
    Jia, X.Y., Li, W.W., Shang, L., Chen, J.J.: An Optimization Viewpoint of Decision-Theoretic Rough Set Model. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 457–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1944)Google Scholar
  9. 9.
    Slezak, D., Ziarko, W.: The investigation of the bayesian rough set model. International Journal of Approximate Reasoning 40(1-2), 81–91 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yao, J.T., Yao, Y.Y., Ziarko, W.: Probabilistic rough sets: Approximations, decision-makings, and applications. International Journal of Approximate Reasoning 49(2), 253–254 (2008)CrossRefGoogle Scholar
  11. 11.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20(5), 287–297 (2003)CrossRefGoogle Scholar
  12. 12.
    Yao, Y.Y.: Decision-Theoretic Rough Set Models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximate Reasoning 49(2), 255–271 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Information Sciences 181(6), 1080–1096 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Yao, Y.Y.: An Outline of a Theory of Three-Way Decisions. In: Yao, J.T., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Information Sciences 178(17), 3356–3373 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nouman Azam
    • 1
  • JingTao Yao
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations