D-Xylitol pp 39-61 | Cite as

Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art

  • Anuj K. ChandelEmail author
  • Felipe A. F. Antunes
  • Priscila Vaz de Arruda
  • Thais S. S. Milessi
  • Silvio S. da Silva
  • Maria das Graças de Almeida FelipeEmail author


Geo-political, long-term economic and sustainable concerns are promoting researchers and entrepreneurs to harness the potential of lignocellulosic feedstock (LCF) into industrially significant products. Agro-residues (sugarcane bagasse, wheat straw, rice straw, corn stover, etc.) constitute the principal fraction of LCF and are available in large amounts globally. The judicious exploration of agro-residues into important products such as d-xylitol, an artificial sweetener, may provide a strong platform for its sustainable supply to the medical and non-medical applications-based sectors. Pretreatment of agro-residues by dilute acid hydrolysis is an inevitable process for the depolymerisation of hemicellulosic fraction into xylose and other sugars. Dilute acid catalyses hemicellulose fractionation at high temperature within short reaction times. Significant developments have been made in the past towards the chemical hydrolysis of agro-residues, particularly for the hemicellulose breakdown. Critical parameters such as acid load, temperature, residence time and solid-to-liquid ratio play pivotal roles in the kinetics of dilute acid hydrolysis of agro-residues. Furthermore, reactor configurations such as counter-current, plug-flow, percolation and shrinking-bed have been designed in order to maximize the sugars recovery with minimum inhibitors generation. This chapter reviews the process parameters, kinetics, methods and reactor engineering for the dilute acid catalysed processes employed for agro-residues.


Agro-residues Dilute acid hydrolysis Hemicellulose depolymerization Pretreatment Reaction kinetics Reactor design 



We are grateful to the BIOEN/FAPESP, CNPq and CAPES, Brazil for financial assistance.


  1. Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohyd Res 344:660–666CrossRefGoogle Scholar
  2. Anupama A, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479PubMedCrossRefGoogle Scholar
  3. Baek S-C, Kwon Y-J (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol Bioproc Eng 12:404–419CrossRefGoogle Scholar
  4. Bösch P, Wallberg O, Joelsson E, Galbe M, Zacchi G (2010) Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production. Biotechnol Biofuels 3:15PubMedCrossRefGoogle Scholar
  5. Boussarsar H, Rogé B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Biores Technol 100:6537–6542CrossRefGoogle Scholar
  6. Branco RF, Santos JC, Sarrouh BF, Rivaldi JD, Pessoa Jr A, Silva SS (2008) Profiles of xylose redutase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84:324–330Google Scholar
  7. Brunow G, Lundquist K, Gellerstedt G (1999) Lignin. In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and paper making. Springer, Berlin, pp 77–124Google Scholar
  8. Bura R, Chandra R, Saddler J (2009) Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 25:315–322PubMedCrossRefGoogle Scholar
  9. Canilha L, Carvalho W, Silva JBA (2006) Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agric 86:1371–1376CrossRefGoogle Scholar
  10. Canilha L, Carvalho W, Felipe MGA, Silva JBA (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Braz J Microbiol 39:333–336CrossRefGoogle Scholar
  11. Canilha L, Santos VTO, Rocha GJM, Almeida e Silva JB, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2011) A study on the pretreatment of sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475Google Scholar
  12. Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hyd Ener 34:7182–7188CrossRefGoogle Scholar
  13. Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2004) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072PubMedCrossRefGoogle Scholar
  14. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  15. Carvalho W, Canilha L, Silva SS (2007) Semi-continuous xylitol bioproduction in sugarcane bagasse hydrolysate: effect of nutritional supplementation. Rev Bras Cienc Farm 43:47–53CrossRefGoogle Scholar
  16. Chandel AK, Kapoor RK, Singh AK, Kuhad RC (2007a) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98:1947–1950CrossRefGoogle Scholar
  17. Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007b) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  18. Chandel AK, Narasu ML, Rudravaram R, Ravindra P, Narasu ML, Rao LV (2009) Bioconversion of de-oiled rice bran (DORB) hemicellulosic hydrolysate into ethanol by Pichia stipitis NCIM3499 under optimized conditions. Int J Food Eng 2:1–12Google Scholar
  19. Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010a) Key-drivers influencing the commercialization of ethanol based biorefineries. J Comm Biotechnol 16:239–257CrossRefGoogle Scholar
  20. Chandel AK, Singh OV, Rao LV (2010b) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Dordrecht, pp 63–81Google Scholar
  21. Chandel AK, Silva SS, Carvalho W, Singh OV (2011a) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20CrossRefGoogle Scholar
  22. Chandel AK, Silva SS, Singh OV (2011b) Detoxification of lignocellulosic hydrolysates for improved bioconversion of bioethanol. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, RijekaGoogle Scholar
  23. Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2011b) The realm of cellulases in biorefinery development. Crit Rev Biotechnol. doi: 10.3109/07388551.2011.595385
  24. Cheng K–K, Zhang J-A, Ling HZ, Ping W-X, Huang W, Ge J-P, Xu J-M (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207CrossRefGoogle Scholar
  25. Cruz JM, Domínguez H, Parajó JC (2000) Preparation of fermentation media from agricultural wastes and their bioconversion to xylitol. Food Biotechnol 14:79–97CrossRefGoogle Scholar
  26. Dehnavi GZ (2009) Fractionation of the main components of barley spent grains from a microbrewery. University of Borås, Sweden, DissertationGoogle Scholar
  27. Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod 29:404–411CrossRefGoogle Scholar
  28. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  29. Duarte LC, Carvalheiro F, Lopes S (2008) Yeast biomass production in brewery’s spent grains hemicellulosic hydrolyzate. Appl Biochem Biotechnol 148:119–129PubMedCrossRefGoogle Scholar
  30. Ek M, Gellerstedt G, Henriksson G (eds) (2009) Pulp and paper chemistry and technology, wood chemistry and wood biotechnology. De Gruyter, Berlin, pp 1–320Google Scholar
  31. Faith WL (1945) Development of the Scholler process in the United States. Ind Eng Chem 37:9–11CrossRefGoogle Scholar
  32. Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Environmental parameters affecting xylitol production from sugarcane bagasse hemicellulosic hydrolisate by Candida guilliermondii. J Ind Microbiol 18:251–254CrossRefGoogle Scholar
  33. Fengel D, Wegener G (1984) Wood—chemistry, ultrastructure, reactions. Walterde Gruyter, BerlinGoogle Scholar
  34. Gajula CS, Konakalla R, Chandel AK, Kumari TDS, Rudravaram R, Mangamoori ML (2010) Bioconversion of groundnut shell hemicellulose hydrolysate into fuel ethanol production by Pichia stipitis NCIM 3498. Technol Spec 4:31–36Google Scholar
  35. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800CrossRefGoogle Scholar
  36. Grohmann K, Torget RW, Himmel M (1986) Dilute acid pretreatment of biomass at high solids concentrations. Biotechnol Bioeng Symp 17:135–151Google Scholar
  37. Guo Y, Yan Q, Jiang Z, Teng C, Wang X (2010) Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J Ind Microbiol Biotechnol 37:1137–1143PubMedCrossRefGoogle Scholar
  38. Herrera A, Téllez-Luis S J, Ramírez JA, Vázquez M (2003) Production of xylose from Sorghum straw using hydrochloric acid. J Cereal Sci 37:267–274Google Scholar
  39. Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–609Google Scholar
  40. Kapdan IK, Kargi F, Oztekin R (2011) Effects of operating parameters on acid hydrolysis of ground wheat starch: Maximization of the sugar yield by statistical experiment design. Starch - Stärke 63:311–318CrossRefGoogle Scholar
  41. Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW (2011) Diluted acid pretreatment of barley straw and its saccharification and fermentation. Biotechnol Bioproc Eng 16:725–732CrossRefGoogle Scholar
  42. Kirimura K, Watanabe T, Sunagawa T (1999) Citric acid production from xylan and xylan hudrolysate by semi-solid culture of Arpergilus niger. Biosci Biotechnol Biochem 63:226–228PubMedCrossRefGoogle Scholar
  43. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Biores Technol 101:1036–1043Google Scholar
  44. Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115Google Scholar
  45. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Mangwandi C, Walker GM (2011) Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, RijekaGoogle Scholar
  46. Li WZ, Xu J, Yan YJ, Zhu XF, Chen MQ, Tan ZC (2008) Studies of monosaccharide production through lignocellulosic waste hydrolysis using double acids. Energy Fuels 22(3):2015–2021CrossRefGoogle Scholar
  47. Mantanis G, Nakos P, Berns J, Rigal L (2000) Turning agricultural straw residues into value-added composite products: a new environmentally friendly technology. Proceedings of the 5th international conference on environmental pollution, pp 840–848, Aristotelian University, Thessaloniki, GreeceGoogle Scholar
  48. Martín C, Puls J, Saake B, Schreiber A (2011) Effect of glycerol preatreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cellul Chem Technol 45:487–494Google Scholar
  49. Mcmillan JD (1992) NREL Report TP-421–4978. Golden, CO, USAGoogle Scholar
  50. Megawati Sediawan WB, Sulistyo H, Hidayat M (2011) Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: Effect of catalyst concentration. Biores Technol 102:2062–2067CrossRefGoogle Scholar
  51. Milessi TSS, Chandel AK, Branco RF, Silva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nut Sci 2:235–240CrossRefGoogle Scholar
  52. Mosier N, Wyman C, Dale B, Elander R, Lee Y–Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRefGoogle Scholar
  53. Mouta RO, Chandel AK, Rodrigues RCLB, Silva MB, Rocha GJM, Silva SS (2011) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech. doi: 10.1007/s12355-011-0116-y Google Scholar
  54. Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agr 85:2453–2460CrossRefGoogle Scholar
  55. Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, Spain, pp 897–907Google Scholar
  56. Mussatto SI, Fernandes M, Roberto IC (2007) Lignin recovery from brewer’s spent grain black liquor. Carbohyd Polym 70:218–223CrossRefGoogle Scholar
  57. Mussatto SI, Carneiro LM, Silva JPA, Roberto IC, Teixeira JA (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohyd Polym 83:368–374CrossRefGoogle Scholar
  58. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58PubMedCrossRefGoogle Scholar
  59. Nguyen Q, Tucker M, Keller F, Eddy F (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84:561–576PubMedCrossRefGoogle Scholar
  60. Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16:367–372CrossRefGoogle Scholar
  61. Nigam JN (2001) Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. J Biotechnol 87:17–27PubMedCrossRefGoogle Scholar
  62. Ou MS, Ingram LO, Shanmugam KT (2011) L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38:599–605PubMedCrossRefGoogle Scholar
  63. Rabelo SC, Carrere H, Maciel filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Biores Technol 102:7887–7895CrossRefGoogle Scholar
  64. Rahman SHA, Choudhury JP, Ahmad AL (2006) Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem Eng J 30:97–103CrossRefGoogle Scholar
  65. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176CrossRefGoogle Scholar
  66. Rocha GJM, Martin M, Soares IB, Maior AMS, Baudel HM, Abreus CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioener 35:663–670CrossRefGoogle Scholar
  67. Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279CrossRefGoogle Scholar
  68. Rodrigues RCLB, RochaGJM, Rodrigues Jr D, Filho HJI, Felipe MGA, Pessoa Jr A (2010) Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Biores Technol 101:1247–1253Google Scholar
  69. Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655PubMedCrossRefGoogle Scholar
  70. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74Google Scholar
  71. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42:160–166PubMedCrossRefGoogle Scholar
  72. Saeman JF (1945) Kinetics of wood saccharification. Ind Eng Chem 37:43–52CrossRefGoogle Scholar
  73. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  74. Sanchez G, Pilcher L, Roslander C, Modig T, Galbe M, Liden G (2004) Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja brava. Biores Technol 93:249–256CrossRefGoogle Scholar
  75. Sepúlveda-Huerta E, Tellez-Luis SJ, Bocanegra-García V, Ramírez JA, Vázquez M (2006) Production of detoxified sorghum straw hydrolysates for fermentative purposes. J Sci Food Agr 86:2579–2586CrossRefGoogle Scholar
  76. Shatalov AA, Pereira H (2012) Xylose production from giant reed (Arundo donax L.): modeling and optimization of dilute acid hydrolysis. Carbohyd Polym 87:210–217CrossRefGoogle Scholar
  77. Silva SS, Musstto SI, Santos JC, Santos DT, Polizel J (2007) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biocehm Biotechnol 141:215–227Google Scholar
  78. Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010a) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Biores Technol 101:7402–7409CrossRefGoogle Scholar
  79. Silva SS, Mussatto SI, Santos JC, Santos DT, Polizel J (2010b) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotechnol 141:215–228CrossRefGoogle Scholar
  80. Silva VFN, Arruda PV, Felipe MGA, Gonçalves AR, Rocha GJM (2010c) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38:809–817PubMedCrossRefGoogle Scholar
  81. Sjöström E (1993) Wood polysaccharides. In: Sjöström E (ed) Wood chemistry: Fundamentals and applications, 2nd edn. Academic Press, New York, pp 54–70Google Scholar
  82. Taherzadeh MJ, Karimi K (2007) Acid based hydrolysis process for bioethanol production from lignocellulosic materials: a review. BioRes 2:472–499Google Scholar
  83. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651PubMedCrossRefGoogle Scholar
  84. Tamanini C, Oliveira AS, Felipe MGA, Canettieri EV, Cândido EJ, Hauly MCO (2004) Avaliação da casca de aveia para a produção biotecnológica de xilitol. Acta Sci Technol 26:117–125Google Scholar
  85. Téllez-Luis SJ, Ramírez JA, Vázquez M (2002) Mathematical modelling of hemicellulosic sugar production from Sorghum straw. J Food Eng 52:285–291CrossRefGoogle Scholar
  86. Viikari L (2004) Overcoming technical barriers in bioethanol production from lignocellulosics. European-China workshop on liquid biofuels; 4–5 Novemb, BeijingGoogle Scholar
  87. Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352PubMedCrossRefGoogle Scholar
  88. Xie G, West T (2009) Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation. Lett Appl Microbiol 48:639–644PubMedCrossRefGoogle Scholar
  89. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuels Biopr Bioref 2:26–40CrossRefGoogle Scholar
  90. Zhang D, Ong YL, Li Z, Wua JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642CrossRefGoogle Scholar
  91. Zhao X, Song Y, Liu D (2011) Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2, 3–butanediol production. Enzyme Microb Technol 49:413–419PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anuj K. Chandel
    • 1
    Email author
  • Felipe A. F. Antunes
    • 1
  • Priscila Vaz de Arruda
    • 1
  • Thais S. S. Milessi
    • 1
  • Silvio S. da Silva
    • 1
  • Maria das Graças de Almeida Felipe
    • 1
    Email author
  1. 1.Department of Biotechnology, Engineering School of LorenaUniversity of São PauloSão PauloBrazil

Personalised recommendations